Showing 47 results for Mechanical Properties
M.r Borhani, S.r. Shoja-Razavi, F. Kermani,
Volume 10, Issue 1 (6-2024)
Abstract
In this study, the effects of friction stir welding (FSW) parameters on the properties of dissimilar joints formed between 5083 aluminum alloys and 316L austenitic stainless steel, with a thickness of 4 mm, are investigated. The tool speed is varied in the range of 16 to 25 mm/min, while the tool rotation speed is maintained at a constant value of 250 rpm. To examine the microstructure of different weld regions, both optical and scanning electron microscopes are employed. To assess the mechanical properties, hardness and tensile tests are conducted. The results shows the formation of a composite region characterized by steel reinforcement particles dispersed within an aluminum matrix. At the steel-aluminum interface, a single layer of discontinuous intermetallic composition with a thickness of approximately 2 micrometers is observed. Notably, when the rotation speed is set to 250 rpm and the tool speed is 16 mm/min, a tensile strength of 298 MPa and ductility of 26% (93% of the tensile strength and 50% of the ductility of the 5083 aluminum alloy) are achieved.
R. Abbasi, S. A.a. Akbari Mousavi, Y. Vahidshad,
Volume 10, Issue 1 (6-2024)
Abstract
The present study focuses on optimizing the mechanical properties and microstructure of laser welding in Haynes 25 (L-605) cobalt-based superalloy. Initially, the influence of laser welding variables such as laser power, pulse frequency, welding speed, and pulse width on the mechanical and metallurgical properties of the weld joints is investigated. By examining the welding variables, the values of G (thermal gradient) and R (cooling rate) are calculated, and their ratio (G/R) and cooling rate (G×R), which predominantly affect the solidification microstructure, are determined. The structural correlation with the mechanical properties resulting from welding is examined. In this research, it is considered to obtain the welding variables to create a high percentage of the structure in the form of equiaxed dendrite. Microstructural analysis reveals the growth of equiaxed grains and dendritic structures in the weld zone. The high cooling rate in the weld pool leads to dendritic solidification starting from columnar dendrites at the weld walls and ending in equiaxed dendrites at the center of the weld. The microhardness value in the weld zone is HV 328, which is very close to the microhardness of the base material. The tensile strength of the weld samples reaches about 93% to 94% of the base metal tensile strength. Tensile testing of the weld samples indicates a ductile-brittle fracture. Examination of the scanning electron microscope confirms the presence of dimples, intergranular cracks, and microvoids in the fracture zone.
Dr. M. Movahedi, H. Shirovi Khoozani, A. Ozlati,
Volume 10, Issue 2 (12-2024)
Abstract
In this research, the influence of friction stir welding parameters (tool traverse speed ranging from 50 to 150 mm/min, and tool rotational speed ranging from 300 to 1100 rpm) was investigated on the microstructure and mechanical properties of AA5052 aluminum/PP-Z30S polypropylene joint. Results showed that joint formation was accompanied by the formation of mechanical locks in the shape of anchor-like aluminum pieces. Decreasing the heat input (either by increasing the tool traverse speed or decreasing the tool rotational speed) resulted in the formation of larger anchors. The results of tensile-shear test showed that increasing the tool traverse speed from 50 to 100 mm/min led to an enhancement in the fracture load (by ~10%), while at higher traverse speeds, the fracture load decreased (from 235 to 181 N) due to the formation of defects and voids at the joint interface. An increase in the tool rotational speed from 300 to 900 rpm resulted in a superior fracture load (by 70%) due to the formation of anchors perpendicular to the polymer surface with greater penetration depth.
M. Rahimi, M. Omidi, S. Jabbarzare, H. R. Bakhsheshi-Rad, M. Kasiri-Asgarani, H. Ghayour,
Volume 10, Issue 2 (12-2024)
Abstract
In this research, copper/silver-silicon carbide Cu-Ag-SiC composite was prepared by the friction stir processing (FSP). For this purpose, nanometer and micrometer SiC particles were used as reinforcing particles. In order to evaluate the microstructural properties, X-ray diffraction (XRD) analysis, scanning electron microscope and optical microscope were employed. Evaluation of mechanical properties through microhardness measurement, tensile test and pin on disc test were utilized to evaluate the wear behavior of the composite. The results of X-ray analysis revealed the presence of two phases of CuAg solid solution along with SiC particles, which indicated the formation of Cu-Ag-SiC composite. The addition of nano-particles led to a significant decrease in the intensity of peaks compared to micro-particles. This indicated a decrease in the grain size of the CuAg matrix. Using the FSP in the presence of reinforcing particles and without it led to a decrease in the crystal size and average grain size compared to the sample without FSP. So that the grain size of the sample without FSP and the FSPed sample without reinforcing particles and with nano-reinforcing particles were found to be about 46.3, 19.2 and 3.6 µm, respectively. The wear mechanism in the sample before FSP was adhesive wear due to its soft nature of the matrix, and after FSP in the sample without reinforcing particles, the adhesive wear decreased and due to the addition of silicon carbide micro and nano- particles reinforcement, the wear mechanism in entirely altered to abrasive wear. Overall, it can be stated that the addition of silicon carbide nanoparticles by FSP leads to the fabrication of Cu-Ag-SiC composite with high mechanical properties.
H.g. Tehrani-Moghadam, H.r. Jafarian, M. Aghazadeh Ghomi, A. Heidarzadeh,
Volume 11, Issue 1 (7-2025)
Abstract
In this study, the effect of friction stir welding on the microstructure and mechanical properties of Fe-24Ni-4Cr austenitic steel was investigated. For this purpose, a sheet with a thickness of 1 mm was subjected to friction stir welding using a WC-5%Co tool at a traverse speed of 100 mm/min and a tool rotational speed of 450 rpm. Electron backscatter diffraction (EBSD) analysis revealed that this process led to grain refinement and an increase in high-angle grain boundaries in the stir zone, attributed to dynamic recrystallization during welding. Phase maps indicated an increase in the BCC phase fraction in the stir zone compared to the base metal. Given the high strain rate and the presence of stabilizing elements, this phase was primarily strain-induced martensite. Mechanical property assessments showed a significant increase in the tensile strength of the stir zone (450 MPa) compared to the base metal (350 MPa). Moreover, the yield strength of the stir zone (388 MPa) was substantially higher than that of the base metal (145 MPa), which can be attributed to grain refinement, an increase in high-angle grain boundaries, a higher dislocation density, and martensite formation. However, the ductility of the stir zone decreased due to higher stress concentration and dislocation density in this region. These findings suggest that friction stir welding can be an effective method for enhancing the strength and hardness of austenitic steels, but process conditions must be carefully controlled to prevent reductions in toughness and ductility.
A. Rahimi, M. Yazdizadeh, M. Vatan Ara, M. Pouranvari,
Volume 11, Issue 1 (7-2025)
Abstract
Wire-arc additive manufacturing (WAAM) is a prominent technique for producing large metallic components due to its high deposition rate. Utilizing austenitic stainless steels in this process not only reduces production costs but also provides greater design freedom. Among these steels, SS310, known as heat-resistant steel in the industry, offers excellent oxidation resistance and high-temperature performance. However, it is highly susceptible to hot cracking during welding and additive manufacturing processes. In this study, the microstructure and mechanical properties of SS310 fabricated using WAAM with Cold Metal Transfer (CMT) and Gas Metal Arc Welding (GMAW) processes were compared. The results revealed that the CMT process, due to its lower heat input, effectively reduces the susceptibility of SS310 to hot cracking compared to the GMAW process. These findings emphasize the importance of selecting an appropriate process to achieve high-quality components and minimize structural defects.
A. Bahmani, R. Ashiri,
Volume 11, Issue 1 (7-2025)
Abstract
This research looks at how microstructure and mechanical properties change in resistance spot welds of QP980 advanced high-strength steel. It specifically focuses on the effects of zinc coating and how it influences weld nugget formation, mechanical properties, and fracture behavior. The study involved microscopic examinations, mechanical tests, and finite element simulations to determine the thermal history of different weld zones. A key finding was that rapid cooling during the welding process led to the formation of, metastable phases, such as martensite, in both the weld nugget and the heat-affected zone. A finite element model of the welding process was used to simulate heat distribution and analyze the microstructure in various weld regions. This model showed that reaching the peak temperature during four-pulse resistance spot welding is delayed. This delay, along with proper hold times, helps prevent the formation of voids. The simulated thermal history and the rapid heating/cooling conditions effectively predicted the evolution and transformation of the microstructure in different weld areas. It was found that the presence of a zinc coating, and the resulting reduction in electrical contact resistance, delayed the formation of the weld nugget at lower welding currents. However, at higher currents, the primary source of heat generation shifted from contact resistance to bulk resistance within the steel sheet. This led to larger weld nuggets in coated samples compared to uncoated ones. While uncoated samples showed higher weld nugget hardness (512 Vickers) and greater tensile-shear strength (with a maximum load-bearing capacity of 28.1 kN in uncoated samples versus 24 kN in coated samples), coated samples were able to achieve the critical weld nugget size for a change in fracture mode at lower welding currents (9 kA compared to 9.5 kA).