183 نتیجه برای نوع مطالعه: پژوهشي
علی بهمنی، روح اله عشیری،
دوره 11، شماره 1 - ( 4-1404 )
چکیده
این پژوهش به بررسی تغییرات ریزساختاری و خواص مکانیکی جوشهای مقاومتی نقطهای در فولاد استحکام بالای پیشرفته QP980، با تمرکز بر اثرات پوشش روی و تأثیر آن بر تشکیل دکمه جوش، خواص مکانیکی و رفتار شکست جوشها میپردازد. در فرایند تحقیق، از بررسیهای میکروسکوپی، آزمونهای مکانیکی از جمله کشش-برش و میکروسختی استفاده شده و همچنین شبیهسازی اجزای محدود به منظور تعیین پیشینه حرارتی مناطق مختلف جوش انجام گرفت. مشاهده شد که سرد شدن سریع در طول فرایند جوشکاری منجر به تشکیل فازهای ناپایدار مانند مارتنزیت در ناحیه جوش و منطقه متاثر از حرارت میشود. یک مدل اجزای محدود فرایند جوشکاری برای شبیهسازی توزیع گرما و بررسیهای ریزساختاری در مناطق مختلف جوشکاری مورد استفاده قرار گرفت. این مدل نشان داد که رسیدن به دمای بیشینه در طول جوشکاری مقاومتی نقطهای چهار پالسی، به دلیل شرایط جوشکاری پالسی و زمانهای نگهداشتن بین پالسها، به تأخیر میافتد. این تأخیر، در کنار زمان نگهداری مناسب، از تشکیل حفرات جلوگیری میکند. تاریخچه حرارتی شبیهسازی شده توسط مدل اجزا محدود و شرایط گرمایش/خنککاری سریع بهطور مؤثر تکامل و دگرگونی ریزساختار در نواحی مختلف جوش را پیشبینی کرد. علاوه بر این، مطالعه پیشرو رابطه بین ویژگیهای درشتساختاری قطعه با خواص مکانیکی و رفتار شکست جوشها را بررسی میکند. وجود پوشش روی و کاهش مقاومت الکتریکی تماسی ناشی از آن، باعث به تأخیر افتادن تشکیل دکمه جوش در جریانهای جوشکاری پایینتر شد. با این حال، در جریانهای بالاتر، منبع اصلی تولید حرارت از مقاومت تماسی به مقاومت بالک در ورق فولادی تغییر میکند که منجر به تشکیل دکمه جوش بزرگتر در ورقهای پوششدار نسبت به نمونههای بدون پوشش میشود. اگرچه نمونههای بدون پوشش سختی دکمه جوش (با مقدار 512 ویکرز) و استحکام کششی-برشی بالاتری نشان دادند (با بیشینه نیروی تحملشده 28/1 کیلونیوتن در نمونه بدون پوشش و 24 کیلونیوتن در نمونه پوششدار)، اما نمونههای پوششدار توانستند در جریانهای جوشکاری کمتر (۹ کیلوآمپر در مقابل 5/9 کیلوآمپر) به اندازه بحرانی دکمه جوش برای تغییر مد شکست برسند.
مجتبی فربختی، سید رضا علمی حسینی، سید علی موسوی محمدی،
دوره 11، شماره 1 - ( 4-1404 )
چکیده
در این تحقیق، اثر شدت جریان جوشکاری مقاومتی نقطهای بر تشکیل ترکتردی فلز مذاب (LME) در فولاد پیشرفته QP1180 گالوانیزه بررسی شد. ورقهای فولادی گالوانیزه شده با ضخامت 1 میلیمتر با جریانهای6.5، 7، 7.5 و 8 کیلوآمپر جوشکاری شدند. نتایج نشان داد با افزایش شدت جریان، اندازه ناحیه جوش (ناگت)، حجم ذوب، فرورفتگی الکترود و در نتیجه احتمال شکلگیری ترکهای LME به طور قابل توجهی افزایش یافت. بررسی ریزساختار، توزیع عناصر و ترکها با استفاده از میکروسکوپ نوری و الکترونی انجام شد. نتایج نشان داد که ریزساختار ناحیه جوش عمدتاً مارتنزیتی بوده و توزیع غیریکنواخت عنصر روی در مرز دانهها، آغاز و گسترش ترکهای LME را تسهیل کرده است. ترکها عمدتاً در لبه فرورفتگی حوضچه جوش و همچنین در ناحیه تماس الکترود با ورق مشاهده شدند. تشکیل این ترکها در جریانهای بیش از 7 کیلوآمپر باعث افت خواص مکانیکی شد. بطوریکه با افزایش جریان از 5/6 به 7 کیلوآمپر بیشینۀ نیرو از 21/3 به 18/6 کیلونیوتن کاهش یافت. همچنین، جابجایی از 4/19 به 3/68 میلیمتر رسید. نتایج این پژوهش نشان میدهد که کنترل شدت جریان جوشکاری عامل کلیدی در کاهش پدیده LME و بهبود خواص مکانیکی اتصال در فولادهای QP1180 گالوانیزه میباشد. بهینهسازی پارامترهای جوشکاری، به ویژه محدودسازی شدت جریان، میتواند به جلوگیری از بروز ترکهای ناشی از مذاب و افزایش دوام و ایمنی سازههای خودرویی منجر گردد. پروفیل سختی نشان داد که بیشترین مقدار سختی در ناحیه جوش حاصل شد و پس از آن با فاصله گرفتن به سمت ناحیه تحت تأثیر حرارت سختی کاهش یافت.
سپهر پورمراد کلیبر، حمید خرسند،
دوره 11، شماره 1 - ( 4-1404 )
چکیده
این پژوهش به بررسی اتصال نامتجانس آلیاژهای Ti6Al4V و Inconel 718 با روش فاز مایع گذرا (TLP) و با استفاده از فویل BNi2 و لایه واسط مسی میپردازد. هدف، تحلیل اثر دما (850، 950 و 1050 درجه سانتیگراد) و زمان نگهداری (10، 20 و 30 دقیقه) بر ریزساختار، ترکیب فازی و خواص مکانیکی ناحیه اتصال است. نتایج آنالیز DSC نشان داد که واکنشهای ذوب در حدود 950 درجه آغاز میشود که ناشی از تشکیل ترکیبات یوتکتیکی در سیستم مس-نیکل-بور است. بررسیهای SEM و EDS تشکیل فازهای بینفلزی مانند Ti₂Ni، NiTi، Cr₂Ti و فاز سرامیکی Ni₃B را تایید کردند. در شرایط بهینه (950 درجه سانتیگراد و 20 دقیقه)، ریزساختاری یکنواخت و تشکیل فازهای پایدار مشاهده شد و سختی ناحیه DAZ حدود 420 تا 450 واحد ویکرز بود. در مقابل، دما و زمان بالا باعث ایجاد فازهای ترد و ترکهای انجمادی شد. ضریب نفوذ تیتانیوم در شرایط بهینه برابر باm²/sم 11-2/8x10 برآورد شد. این نتایج اهمیت کنترل دقیق پارامترهای فرایند را برای دستیابی به اتصال باکیفیت نشان میدهند.