Search published articles


Showing 2 results for Emadi

M. Emadi, H. Mostaan, M. Rafiei,
Volume 5, Issue 2 ((Journal OF Welding Science and Technology) 2020)
Abstract

Dissimilar weld joints between stainless steels and nickel based super alloys are extensively used in petrochemical, gas and oil applications. These joints jave great challenges from metallurgical transformations point of view. In this research, microstructural evolutions and corrosion behavior of laser weld joint between Inconel 625 and AISI 430 ferritic stainless steel were investigated. Ferritic stainless steels are less expensive and have magnetic properties in comparison with austenitic stainless steels. Scanning electron microscope and optical microscope were used in order to study the microstructures of weld metal and heat affected zone. It was found that fine dendritic microstructuresare formed in the weld metal which  isgrown in a competition manner. An epitaxial growth was observed in the interface between AISI base metal and weld metal. No considerable grain growth was observed in the heat affected zone on Inconel 625. Corrosion resistance of weld joint was investigated in 3.5 % wtNaCl solution using potantiodynamic polarization test. It was concluded that corrosion resistance is increased from AISI 430 base metal toward Inconel 625 base metal.
 
A. Etemadi, M. Kasiri-Asgarani, H. R. Bakhsheshi-Rad, M. Sadeghi Gogheri,
Volume 9, Issue 2 (Journal OF Welding Science and Technology 2024)
Abstract

In this research, dissimilar joining of biodegradable AZ31 alloy to Ti-6Al-4V titanium alloy by rotary friction welding method was investigated with aim of preparation of pin or screw for orthopedic applications. optical and scanning electron microscope (sem) were used to investigate the microstructure, x-ray diffraction was conducted for phase analysis, torsion and micro-hardness tests were carried out to investigate mechanical properties, and polarization and electrochemical impedance spectroscopy were employed to evaluate corrosion resistance. in the welding procedure, rotational speed of 1100, 1200 and 1300 rpm and friction time of 2 and 4 seconds were considered as variable parameters, and two parameters of friction pressure and forge pressure were considered as constant parameters at 50 and 40 MPa, respectively. The microstructure of the joint zone showed that there is no deformation in the titanium alloy side. However, in the magnesium side, the greatest amount of deformation occurred with the distance from the joint line, where weld center zone (CZ), dynamic recrystallization zone (DRX), thermomechanical affected zone (TMAZ) and partial deformation zone (PDZ) are detected. The formation of intermetallic phases such as Mg2AlZn, Ti3Al and also the refining the grains size is the main reason for increasing the hardness of the magnesium side near the joint line up to 150 HV. The results of the torsion test showed that the welded sample has the highest shear strength of 81.51 MPa and also the highest corrosion resistance among other samples at a rotation speed of 1200 rpm and a friction time of 4 seconds.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb