Search published articles


Showing 38 results for Mechanical Properties

Dr H. Mostan, Dr M. Shamanian, Dr M. Safari,
Volume 1, Issue 1 (1-2016)
Abstract

FeCo-V alloys are one of the most important groups of magnetic material which currently used in high speed engines due to their excellent magnetic and mechanical properties. Welding of these alloys is a great challenge since various phase transformation result in significant changes in magnetic and mechanical properties. In this research ultra-thin FeCo-V magnetic foils were welded using laser and electron beam welding processes. After development of mathematical models, working limits of process parameters were chosen to obtain welded joints which have simultaneously appropriate maximum energy product and mechanical strength.


Dr M. Safari, Dr H. Mostaan,
Volume 1, Issue 1 (1-2016)
Abstract

Weldability of high carbon steels due to the high percentage of carbon and consequently formation of martensitic structure is very poor. In this research, resistance spot welding of eutectoid high carbon steel 1075 is experimentally and numerically investigated from various points of view. The effect of welding current as one of the most effective parameters on failure mode, mechanical properties and nugget size diameter in resistance spot welding is analyzed with experimental tests and numerical simulations. The results show that with increase of welding current, the diameter of nugget size is increased and consequently the failure mode changes from interfacial mode to pull out mode.


M. Ahl Sarmadi, M. Shamanian, H. Edris, A. Behjat, M.a. Mohtadi Bonab, J. Szpunar,
Volume 1, Issue 1 (1-2016)
Abstract

In this study the microstructure and mechanical properties of super duplex stainless steel UNS S32750 welding was studied. For this purpose, the method of gas tungsten arc and filler metal AWS ER2594 with a diameter of 4.2 mm was used. In order to investigate the microstructure light microscopy and electron microscopy equipped with backscatter electron diffraction were used. Mechanical properties were studied by hardness and tensile tests. Weld metal had  Cast structure with austenite in the dendrite form  located in ferrite matrix. It was also observed in the melting zone after welding, the ferrite volume fraction decreased to 50 percent 60% base metal ferrite) ,Due to the low cooling rates and  high heat input method in the gas tungsten arc welding. Vickers micro-hardness test method was carried out on the samples showed that average about 285 Vickers hardness of base metal; however, hardness in the fusion region due to increased austenite fraction fell to 250 Vickers. But hardness in the heat-affected zone due to lower volume fraction of austenite and ferrite phase formation of chromium carbide intermetalic compounds increased to 340 Vickers. The results of the tensile test showed that the tensile strength decreased with increasing heat input, because of increase the size of grains due to the increased heat input.


M. Sadeghi Gogheri, M. Shabani, E. Mirzapour, M. Kasiri, K. Amini,
Volume 2, Issue 1 (8-2016)
Abstract

In this study, commercially pure titanium and aluminum alloy 5083 in connection rotational speed of 1120 rpm and a feed rate of 50 mm per minute for butt welding by friction stir welding has been successfully completed. Micro-structure, hardness and tensile test was conducted on the connection. Welding area is a composite of aluminum and titanium particles that the particles plays an important role in increasing hardness and tensile strength. Welding area is also has three areas. Vickers hardness is 480 times the area of welding means that the hardness in the area of the base metal of titanium and aluminum increased by 16% and 60% for titanium aluminum intermetallic compounds is created in the area is weld.


M. Sabzi, R. Kalantaripour ,
Volume 2, Issue 1 (8-2016)
Abstract

In this investigation, the effect of heat input of SMAW process on the microstructure and mechanical properties of Hadfield steel weld joints was investigated. For this purpose, 4 annealed sheets with thickness
2 mm prepared from Hadfield steel and then welding applied by SMAW process with 6.75 and 11.25 kJ/mm heat input values. The evaluation of the microstructures of welding joints was conducted by optical microscopy and the joints mechanical properties were examined by tensile, charpy impact and microhardness measuring tests. The results indicated that by increasing the heat input in the SMAW process, microstructure consisted from smaller grains, and strength and microhardness increased but impact energy was reduced.  


M. Mohammadi Zahrani, M. Shamanian,
Volume 2, Issue 2 (11-2016)
Abstract

The fine grain structure of friction-stir welded aluminum alloys is unstable during post weld heat treatment and some grains abnormally grown. In this study, the sequence of abnormal grain growth during T6 heat treatment of Al-7075 friction-stir weld and its effect on mechanical properties of the weld was studied. The results showed that heat treatment in 510 ˚C resulted in drastic grain growth in stir zone and fine equiaxed grains in the stir zone of as-welded joint were substituted by millimeter-scale irregular grains. Post weld heat treatment resulted in decrease in the tensile elongation from about 10% to 1.5% although the joint tensile strength improved by 28%. In addition, post weld heat treatment changed the fracture location from the 
heat-affected zone to the stir zone.


M. Amelzadeh, S. E. Mirsalehi,
Volume 2, Issue 2 (11-2016)
Abstract

Nowadays, cemented carbides-steels joints by brazing method are taken into consideration. One of the problems of these joints is the creation residual stresses that can reduce it with choose correct parameters of brazing. In this study, Silver base alloy filler containing copper, zinc and cadmium have been used in temperature 780°C and the effect of time parameter 5, 10 and 15 minutes on microstructure and mechanical properties were investigated. The results indicated that brazing in 15 minutes causes a columnar growth of solid solution phase of copper from cemented carbide side to steel and provides maximum strength of 94MPa. As well as, by passing of time wetting angle of cemented carbide surface reduces from 40° to about 27°.


M. Safari, H. Mostaan,
Volume 2, Issue 2 (11-2016)
Abstract

In this paper, resistance spot welding process of AISI 201 stainless steel is studied experimentally. For this purpose, effect of welding current on quality of weld is investigated and relationships between welding current and fusion zone characteristics are examined. For determining mechanical properties such as maximum load and fracture mode, tensile - shear test of spot welds is performed.  Hardness and microstructural examinations are performed for study the influence of welding current on characteristics of welded joints. The results show that strength of resistance spot welds of AISI 201 stainless steel is increased with increase in welding current. Transition of fracture mode from interfacial to pullout and then pullout with tearing of sheet mode during tensile-shear tests of AISI 201 spot welds is investigated through experimental and theoretical approaches. It is concluded from results that increasing in welding current leads to change in fracture mode from interfacial to pullout mode due to increase in fusion zone size (weld nugget size). Also, it is observed that increasing in fusion zone size is accompanied by an increase in load carrying capacity of resistance spot welds. The minimum required fusion zone size to ensure pullout fracture mode is estimated using an analytical model. 


B. Sadeghi, H. Sharifi, M. Rafiei,
Volume 3, Issue 1 (8-2017)
Abstract

In this research, the microstructure and mechanical behavior of dissimilar joint of AISI 321 stainless steel to ASTM A57CL1 were studied. For this purpose, the GTAW process and ER 308L filler metal with diameter of 1.8 mm were used. In order to study the microstructure and fracture surface of weld samples, optical microscope and scanning electron microscope (SEM) were used. Also, the mechanical behavior of the joint was examined by impact, tension and microhardness tests. It was found that the microstructure of weld metal was austenite with skeletal ferrite. Also in some areas the lacy ferrite was seen. All samples were fractured from ASTM A537CL1 steel with a ductile manner during the tension test. The weld metal indicated high impact energy about 205 J. 
En Payam Gheysari, Dr Fathallah Karimzadeh, Dr Ahmad Rezaeian, En Amin Shahsavari,
Volume 3, Issue 2 (1-2018)
Abstract

In this research in order to improve the mechanical properties of Aluminium alloy 2024, nanostructure Aluminum sheets were first produced by Cryorolling process and then was welded by resistance spot welding method. For this purpose, the samples solution treated at 495˚C for 55 minute and subsequently cryorolled up to 85% reduction in thickness. For obtaining simultaneous strength and ductility, the cryorolled sheets were then subjected to aged. In this regard the produced samples were then resistance spot welded with different welding parameters, including welding current 60 to 105 KA, electrode force of 3 KN, and welding time of 0.1 s. The highest tensile shear peak load was obtained through welding with 95 KA current.


, , ,
Volume 3, Issue 2 (1-2018)
Abstract

Cold roll bonding (CRB) is a solid state welding process, where the bonding is established by compressive plastic deformation of the metals. This process is applicable for a large number of materials. In addition, materials that cannot be bonded by traditional fusion-based processesmight be bonded by CRB process. In this research, cold roll welding of brass and IF steel was studied .The effects of process parameters such as reduction of thickness, pre-rolling annealingconditions and surface roughness on the mechanical propertiesof welded strips were investigated. The peeling and shear punch testswere used to investigate the mechanical properties of welded samples .It was observed that the bond andshear strengthswere enhanced by increasing the reduction and surface roughness. Also, annealing treatment before the CRB process increased the bond strength anddecreasedthe shear strength. Finally, optical and scanning electron microscopes were used to evaluate the fracture surfaces of the tensile and peelingtest specimens.
M. Yousefieh, M. Tamizifar, S.m.a. Boutorabi, E. Borhani,
Volume 3, Issue 2 (1-2018)
Abstract

In the present research, the parameters of FSW process were optimized for the mechanical properties of thin aluminum- scandium alloys by a design of experiment (DOE) technique. The optimum conditions providing the highest mechanical properties were found by this method. Among the three factors and three levels tested, it was concluded that the tool rotational speed had the most significant effect on the mechanical properties and the travel speed had the next most significant effect. The effect of tool tilt angle was less important when compared to the other factors. The EBSD results demonstrated a recrystallized equi axial structure and the existence of a mixture of B and Ccomponents in the weld nugget.
A. Khorram, A. Davoodi Jamalooei, A. Jafari,
Volume 3, Issue 2 (1-2018)
Abstract

In this study, microstructural evaluation and mechanical properties of similar TLP bonded of Inconel 600 by using of BNi-2 interlayer were investigated. The bonding tests were carried out at 1050°C and 1100°C for 5-45 min which homogenization treatment was performed on the best of the bonded samples. Results showed that Ni-B eutectic compound was formed in the a-thermally solidification zone (ASZ) of the bonded sample at 1050°C. In addition to existence of the Ni-B compound, Cr-B was observed in the ASZ of the bonded sample at 1100°C. Ni-B and Ni-Cr-B were formed in the diffusion affected zone (DAZ). TLP bonded sample at 1050°C for 45min including discontinuous areas of ASZ in isothermal solidification zone (ISZ) was the best bonded sample. Homogenization process was carried out on this sample caused to elimination of the eutectic compounds, completely. Mechanical investigation revealed that due to existence of the intermetallic compounds in the ASZ and DAZ, value of hardness for this region were about 510 and 311 HV, respectively. Whit elimination of the intermetallic compounds by performing of homogenization treatment, mechanical properties of the boding region were improved.
 
Majid Tavoosi, Sajad Arjmand, Saied Solgi,
Volume 4, Issue 1 (8-2018)
Abstract

The influence of heat-input and pre-heat treatment on the structure, mechanical and corrosion behaviors of 2205 duplex stainless steel joint by means of GMAW process was the goal of this study. In this regards, the welding process was done using different heat input in the range of 0.6 to 1.4 kJ/mm and different pre-heating treatments in the range of 25 to 100 oC. The microstructural properties of prepared samples were evaluated using x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Based on archived results, the microstructure of as-welded samples were combinations of Widmaneshtaten austenite which nucleated from boundaries and growth toward central part of ferrite grains. By increasing the heat-input, the percentages of ferrite and austenite phases decreased and increased, respectively. In this condition, the highest value of strength and ductility was achieved in as-weld samples with medium (1.0 kJ/mm) heat-input. The corrosion studies showed that the heat-input has negligible effects on corrosion behaviors of 2205 duplex stainless steel joint. It was also found that the pre-heating treatment has adverse effect on the mechanical properties of the junction.    


H. Rezaei Ashtiani, M. Shafiee,
Volume 4, Issue 1 (8-2018)
Abstract

Friction stir spot welding (FSSW) is a type of solid state welding that is used in the connection of small pieces and light metals such as aluminum alloy especially. The technical problem during melting of aluminum alloys is one of the most important reasons for developing application of friction stir welding for aluminum alloys. In this research, the effects of important processing parameters such as tool rotation speed, dwell time, plunge depth of tool and sheets thickness on the mechanical properties such as failure force and energy of FSS welded AA-3105 alloy have been experimentally studied using micro hardness and tensile tests. Tensile-shear tests show four different fracture modes of weld failure which consist of shear fracture, circumferential fracture, nugget pull out fracture and fracture in base material modes. The results show that the weld strength drops with increasing the tool rotation speed. Strength and hardness of weld and weld zone increase and then decrease with increasing dwell time of rotational tool which it can be obtained an optimum value of dwell time. Strength and fracture energy and load of welds increases with increasing the sheet thickness
H. Mostaan, M. Safari, A. Sonboli, M. Haddadi, A. Taherkhani,
Volume 4, Issue 1 (8-2018)
Abstract

In this paper, numerical and empirical investigations of the effect of AISI 347 stainless steel interlayer on the microstructure, mechanical properties and fracture mode of AISI 321 stainless steel resistance spot welds have been conducted. For this purpose, two types of joints, the first free from inter layer and the second contains interlayer with 0.05 mm thickness as well as difference currents and times,were evaluated. In order to examine the mechanical properties including maximum force and tensile mode, tensile – shear test of the spot welds was done. The obtained results indicated that an increase in the welding time and current resulted in a change in fracture mode from interfacial to peripheral owing to an increase in fusion zone volume. The change in the chemical composition because of the presence of interlayer and an increase in cooling rate caused the formation of different phases as well as observation of the dispersed Martensite phase in fusion zone.
 
M. Gholami, H. Mostaan, A. Sonboli, ,
Volume 4, Issue 2 (1-2019)
Abstract

In this research, gas tungsten arc welding of dissimilar joint between 4130 low alloy steel and AISI 201 austenitic stainless steel was investigated. Four filler metals i. e. ERNiCr-3, ER 309L, ER 308L and ER 80SB2 were used. After welding, microstructural features of various areas and also fracture surfaces were examined using optical microscopy and scanning electron microscopy. Tensile test was conducted in order to study the mechanical properties of each joint. It was found that ERNiCr-3 is fractured from fusion zone and the others were fractured from 4130 base metal. Also, some second phase particles such as NbC were seen in the ERNiCr-3 weld joint. SEM observation showed that the fracture behavior of ERNiCr-3 weld joint is semi brittle and the others are ductile. The fusion zone of ERNiCr-3 weld joint was fully austenitic and consisted of equiaxed grains and no crack was seen in this area. The fusion zone of ER 308L and ER 309L were composed from cellular dendrite and finally ER 80S-B2 weld joint was consisted of lath martensite.
A. Hajitabar, H. Naffakh-Moosavy,
Volume 4, Issue 2 (1-2019)
Abstract

The effect of electron beam welding current changes on the microstructure and mechanical properties of the Nb-based alloy has been investigated. The electron beam welding was applied with 4 different currents of 20, 24, 30 and 35 mA on 3mm thick plates. The aspects including different welding regions, geometry and depth of welding penetration, as well as the effect of heat input on the weldability are investigated. The mechanical properties including tensile and microhardness values of the weld was also measured. The results show that in a sample with a 30 mA welding current, the optimum conditions for the depth of penetration, weldability and the geometry of the weld are obtained. The welds showed a cellular structure, and intercellular dendrites in the central region of the weld have been caused due to microsegregations created between the cells. In HAZ, severe recrystallization and grain growth has occurred. Because of the high thermal conductivity of niobium, the HAZ size is relatively large. Based on the 3D Rosenthal’s equation, the recrystallization temperature of alloy was calculated as 713 °C. It is observed that as G × R increases, the grain size in the central line of the weld decreases. The hardness profile shows that the hardness of the weld zone and the HAZ is significantly less than that of the base metal due to elimination of work hardening effect. The tensile strength of the weld for a sample with a current of 30 mA was 281MPa, which is 53% of the tensile strength of the base metal and the weld was broken from the HAZ.
I. Rasouli, M. Rafiei,
Volume 4, Issue 2 (1-2019)
Abstract

In this research, microstructure and mechanical properties of AISI316 to AISI430 dissimilar joint were investigated. For this purpose, GTAW process using ER316L and ER2209 filler metals with diameter of 2.4 mm was used. The microstructure and fracture surface of the welded samples were characterized by optical microscopy and scanning electron microscopy. Also the mechanical properties of the welded samples were evaluated by tension, impact and microhardness tests. It was found that the microstructure of the welded sample with ER316L filler metal contained Widmanstatten austenite with inter-dendritic and lathy ferrites. Also, in the welded sample with ER2209 filler metal, Austenite phase in ferrite matrix was seen. In tension test, all samples were fractured from AISI430 side of the joint in a ductile manner. ER2209 weld metal indicated low impact energy of about 27 J, while ER316L weld metal indicated higher impact energy of about 43 J. The fracture surface in both welded samples indicated brittle fracture mode. The microhardness of the weld metal of the welded sample with ER316L filler metal was higher than the welded sample with ER2209 filler metal due to the presence of alloying elements, proper distribution of delta ferrite and finer microstructure.
B. Safarbali, M. Shamanian, A. Eslami,
Volume 5, Issue 1 (9-2019)
Abstract

In present study, the effect of heat treatment after friction stir welding dissimilar welds T6-7075 and T4-2024 aluminum alloys were investigated. Friction stir welding was performed at a constant rotation speed of 1140 rpm and welding speed 32 mm/min. After welding samples are taken under various heat treatment processes at different aging temperature and time period. Microstructural observations, phase analysis characterization and mechanical properties were performed on welded before and after heat treatment in cross section of welds joint. The results showed that post-weld heat treatment causes abnormal grain growth turns destructive effect on the mechanical properties, while formation of fine and uniform precipitation recovery strength and ductility of welds joints. It is found heat treatment based on T6-7075 and T6-2024 procedure has highest and lowest impact on the restore of weld strength. Tensile test indicate that fracture occurred on the interface between TMAZ and HAZ in retreating side (7075) at as-weld joint, if that failure happens in the stir zone by applying PWHT. Surface fracture suggested fractures in PWHT samples are predominantly inter-granular, while in as-weld joint the fractures of joints are mostly trans-granular.

Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb