Showing 1 results for Continuity.
M. Lotfi, H. Sabet, B. Karbakhsh Ravari, Gh. Faghani,
Volume 11, Issue 2 (12-2025)
Abstract
In the present study, AISI 1030 cast-steel samples were cladded using duplex stainless-steel wire ER2209 by the Gas Tungsten Arc Welding (GTAW) process under different preheating temperatures and varying numbers of passes. The degrre of dilution of the clad layers,affected by both of the preheating temperature and the number of passes—was calculated, and was evaluated its influence on the adhesion and bonding integrity of the ER2209 clad layer on the cast-steel substrate. The results showed that by increasing the number of clad layers led to a lower dilution in the samples. Furthermore, a rise in preheating temperature also contributed to an increase in dilution. Among all conditions, the three-pass cladded sample with a preheating temperature of 100 °C exhibited the highest dilution degree. Bending test results demonstrated that the bending angle increased by the number of clad passes. Macroscopic examination confirmed that complete interfacial continuity between the clad layer and the base metal. Phase analysis and microstructural observations revealed that the base metal consisted of approximately 80% ferrite and 20% pearlite; the heat-affected zone (HAZ) exhibited a ferrite–transformed pearlite structure with similar volume fractions; and the cladded samples in the final pass presented a duplex austenitic–ferritic structure with 10–20 Wt.% ferrite content. Microhardness test indicated that the two-pass cladded sample that preheated at 200 °C had the highest hardness value, up to 355 HV.