Search published articles


Showing 2 results for Low Carbon Steel.

M. E. Kazemian, F. Mohsenifar, R. Ghanbarzadeh,
Volume 3, Issue 1 (8-2017)
Abstract

In this paper, laser beam welding of a rectangular piece of steel was simulated using Fluent software. Physical properties of analytical field was constant and its changes with temperature was ignored. In the present work, effect of tool speed and laser power on temperature distribution of workpiece surface and different deeps in the plane of symmetry and also maximum of temperature and depth of penetration were investigated. Using a macro code, geometry generation and meshing of the analytical field by helping required geometric  parameters were provided for software. Moreover, laser radiation power was exerted by writing an UDF in the fluent software. In this case, it was assumed that the workpiece is stationary and gaussian thermal source model defined in UDF moves with the intended speed. Results show that at a constant power, maximum temperature of the workpiece decreases with increasing heat source speed, moreover, in this case, gradient of temperature in front of the workpiece and behind of it, increases and decreases respectively. It is found that the temperature in the depth of the workpiece increases with increasing the power.
F. Bashirzadeh, T. Saeid,
Volume 11, Issue 1 (7-2025)
Abstract

Unlike conventional welding methods, joining titanium alloys to steels using ultrasonic welding does not result in the formation of brittle intermetallic compounds and high torsion, causing a reduction in the mechanical properties of the joint. Ultrasonic welding of the St12-CP.Ti samples was performed at constant parameters of 7 bars, 2 s and 1 kW and variable parameter of interlayer material (Cu, 70B and Zn). The investigation of samples by OM, SEM, shear-tensile and microhardness tests revealed that Zn and Cu samples had the lowest and highest bond densities, with 42.2 and 80.6 percent, respectively. The bond density and the strength of the sample with greater interlayer deformability have higher values. Due to the high plastic deformation capability of copper, the Cu sample has generated more heat and deformation at the joint interface than in the other samples. As a result, the microstructure underwent recrystallization and grain growth after enduring severe plastic deformation. Also, the highest hardness of the steel side equal to
201 HV was for the Cu sample, followed by 70B and Zn, respectively.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb