Search published articles


Showing 2 results for Pulsed Current

A. Adelian, Kh. Ranjbar, M. Reihanian, R. Dehmolaei,
Volume 11, Issue 2 (12-2025)
Abstract

This study investigated the effects of pulsed current and constant current on the microstructure and mechanical properties of Hastelloy X superalloy welds produced by Gas Tungsten Arc Welding (GTAW), using ERNiCrMo-2 filler metal. Key microstructural parameters, such as elemental segregation, dendrite refinement, and weld metal uniformity, along with changes in weld strength and hardness, were examined and compared between the two welding modes. Microstructural evaluations were conducted using optical microscopy, Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectroscopy (EDS), and X-ray Diffraction (XRD) for phase identification. Pulsed current welding resulted in a finer microstructure with more equiaxed dendrites, reduced elemental segregation, and a more uniform distribution of M₆C carbides. Furthermore, this process led to significant improvements in hardness, impact toughness, and tensile strength of the weld metal compared to constant current welding. Fracture analysis confirmed ductile fracture behavior in all specimens, consistent with the microstructural and mechanical findings. The results of this research highlight the importance of using pulsed current in GTAW as an effective method for controlling the microstructure and enhancing the mechanical properties of Hastelloy X alloy joints. 

R. Sahihi, S. M. A. Boutorabi, R. Ashiri,
Volume 11, Issue 2 (12-2025)
Abstract

The weldability of the superalloy Inconel 738LC is compromised by its susceptibility to heat-affected zone (HAZ) liquation cracking, a consequence of its high gamma-prime (γ') precipitate strength and the formation of low-melting-point eutectic phases. This study investigates the impact of Gas Tungsten Arc Welding (GTAW) current mode—comparing continuous current with pulsed current—on the microstructure, mechanical properties, and overall weldability of IN738LC. Through room-temperature tensile testing, Vickers hardness measurements, and microstructural analysis via optical and electron microscopy, it was demonstrated that pulsed current, particularly at higher frequencies, substantially mitigates liquation cracking and improves joint integrity. The pulsed technique introduces controlled thermal fluctuations that reduce the effective heat input, promoting a transition from columnar to equiaxed dendritic solidification, minimizing interdendritic segregation, and refining the distribution of MC carbides. Consequently, the weld metal exhibits enhanced tensile strength, ductility, and hardness. These findings establish pulsed GTAW as an effective strategy for suppressing cracking and improving the performance of IN738LC welded joints.


Page 1 from 1     

© 2026 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb