Search published articles


Showing 2 results for Wc-Co

Behnam Heidari-Dehkordi, Mahdi Rafiei, Mahdi Omidi, Mohsen Abbasi-Baharanchi,
Volume 9, Issue 2 (8-2024)
Abstract

In this study, 316L stainless steel and WC-10Co cermet were bonded by transient liquid phase process with BNi-2 interlayers with different thicknesses of 25 and 50 μm. The bonding process was conducted at 1050 °C for 1, 15, and 30 min. After bonding, the microstructure of the joints was examined using optical microscopy and scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy. Microhardness and tensile-shear tests were also performed to study the mechanical properties of the bonded samples. Microstructural analyses revealed that the formation mechanism of the solidified region in all samples was isothermal solidification, resulting in an isothermal solidification zone upon bonding. Additionally, the only phase present in the isothermal solidification zone was a nickel-based solid solution. In the diffusion-affected zone of the steel base material, complex borides formed regardless of the interlayer thickness. In the diffusion-affected zone of the WC-Co material, a brittle eta phase formed. Microhardness tests indicated that the maximum hardness in all samples was approximately 1100 Vickers, which was attributed to the presence of hard WC particles in the WC-Co base material. Furthermore, the highest tensile-shear strength, approximately 240 MPa, was observed in the bonded sample for 15 min with 50 μm thickness interlayer.
 
H. Zeidabadinejad, M. Rafiei, I. Ebrahimzadeh, M. Omidi, F. Naeimi ,
Volume 10, Issue 1 (6-2024)
Abstract

In this research, the transient liquid phase bonding of St52 carbon steel to WC-Co cermet using a copper interlayer with 50 μm thickness was done. For this purpose, samples were jointed to each other at a constant temperature of 1100 ºC and bonding times of 1, 15, 30, and 45 min. The microstructure of the joints was examined using an optical microscope and scanning electron microscope equipped with energy-dispersive X-ray spectroscopy. XRD analysis was also used to investigate the effect of bonding on the phase changes of the bonding area. Microhardness and tensile shear tests were also conducted to study the mechanical properties of the samples. Microstructural investigations showed the formation of three different zones including isothermal and athermal solidification zones and DAZ in the WC-Co base material side, which determine the characteristics of the samples. The isothermal solidification zone contained a Fe-rich solid solution and the athermal solidification zone contained a Cu-rich solid solution. η phase was not formed in the DAZ of WC-Co cermet at bonding times of 1 and 15 min. This phase was formed in the DAZ of WC-Co cermet by increasing the bonding time to 30 and 45 min. The microhardness studies showed that all samples had the same trend. Maximum microhardness was 1100 HV which was related to WC-Co base cermet and the lowest microhardness was about 220 HV which was related to steel base metal. Also, the maximum tensile-shear strength of the bonded samples was about 180 MPa for a bonded sample at a bonding time of 15 min, which was due to the increase in the volume fraction of iron-rich solid solution, as well as proper microstructural continuity and the presence of an optimal amount of copper-rich phase in the microstructure.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb