Search published articles


Showing 2 results for Spark Plasma Sintering

B. Sadeghi, M. Shamanian, F. Ashrafizadeh, P. Cavaliere,
Volume 4, Issue 2 (1-2019)
Abstract

Solid state joining of powder metallurgy (P/M) processed and sintered by spark plasma sintering through friction stir welding (FSW) was studied. The nanocomposites were prepared via mechanical milling followed by spark plasma sintering. The microstructural and mechanical of the joints were evaluated as a function of the different processing parameters such as rotating and advancing speeds of the tool. The achieved finding revelled that the FSW of the nanocomposites produced by P/M containing bimodal sized Al2O3 reinforcement have a working window are affected by the heat input. The joint evolution revelled that the microstructure and mechanical properties of those was related to the generated heat input during the welding. It is known that dynamic recrystallization (DRX) caused grain size refinement of aluminium into stir zone. Meanwhile, it was revealed that the pinning effect of Al2O3 nanoparticles retarded grain growth of the recrystallized grains caused by dynamic recrystallization (DRX)
S. Ahmadpour, R. Dehmolaei, Kh. Ranjbar, M. Reihanian,
Volume 11, Issue 2 (12-2025)
Abstract

In this study, the effects of diffusion-bonding temperature and time on the microstructure and corrosion behavior of Al₀.₅CoCrFeMnTi₀.₅ high-entropy alloy coatings applied on A283 plain carbon steel were investigated. The coatings were produced by diffusion bonding using the spark plasma sintering method, in which high-entropy alloy powders were bonded to the substrate at temperatures of 850, 950, and 1050°C for holding times of 10, 15, and 20 minutes. Microstructural characterization performed by field-emission scanning electron microscopy (FESEM) revealed that increasing the diffusion-bonding temperature and time led to reduced porosity and enhanced coating densification. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests conducted in a 3.5 wt.% NaCl solution demonstrated that increasing the bonding temperature and time resulted in higher charge transfer resistance (Rct) and corrosion potential (Ecorr values, along with a decrease in corrosion current density (icorr). The coating produced at 1050°C with a holding time of 20 minutes exhibited the highest corrosion resistance. The improvement in corrosion performance was attributed to the formation of a uniform and adherent oxide film, which effectively inhibited the penetration of corrosive ions into the steel substrate.


Page 1 from 1     

© 2026 CC BY-NC 4.0 | Journal of Welding Science and Technology of Iran

Designed & Developed by : Yektaweb