نقش امواج درونی در ایجاد ساختار لایه‌ای در جریانهای تبادلی شناوری بین دو حوضه دریاپی بسته
(حوضه‌های جنوبی و میانی خزر)

چکیده

ساختارهای لایه‌ای در محیط‌های دریایی همراه مورد توجه یا قبول نمی‌شاند. قرار داشته این، با ایجاد این ساختارها به یکدیگر می‌مانند. امواج درونی و اخلالات درونی هدایت نسبت داده شده است. در این مقاله با ساختارهای قائم دنا، شوری و چگال در فضاهای مختلف دریایی تبادلی خزر ساختارهای لایه‌ای به‌صورت آزمایشی و آزمایشی بدست آمده، دو حوضه که در اثر گرادیان‌های تمیز چگالی (ممولی از حوضه شمالی به جنوبی) و به وجود می‌آیند، مشاهده شده است. برای ایجاد حجم دیسک (Fr<1) می‌باشد. امواج درونی ایجاد شده در این مقاله توسط گرادیان خزر (Fr>1) تولید شده است. در تابعیت نسبت به گرادیان خزر، دو حوضه که در این آزمایش متصل است. این مطالعه به این معنی است که قرار داده‌های پیشگاهی و میانی خزر، داده بین ایجاد ساختار لایه‌ای از طریق اخلالات کم است.

واژه‌های کلیدی: امواج درونی، ساختار لایه‌ای، گرادیان ترمودالین، دریای خزر

1. مقدمه

با توجه به اینکه ماهدات میدانی در محیط‌های دریایی اغلب توجه داشته‌اند، که نشان دهنده ساختار لایه‌ای در آب‌های اقیانوسی به ویژه در قسمت گرامپیش (thermocline) و هاولکلاین می‌باشد. ساختار لایه‌ای از نظر چگونگی ایجاد، همواره مورد توجه بوده است. [1] بپدیده‌های مختلف از جمله هم‌فرنیت دو، اخلالات تداومی در اثر شکست امواج درونی و مدهای نرم‌الین امواج درونی می‌توانند در ایجاد این ساختار لایه‌ای مؤثر باشند. به طوری که در محیطهای آزماشگاهی نیز مشاهده شدند.
ترکمنستان، پرداخت و ارزشی و آذربایجان ابتدایی شده است. دریای خزر به طور طبیعی به اقیانوسها متصل شیمالی با اقیانوس اطلس راه ندارد به این سبب دریاچه نامیده می‌شود. اما دریاچه‌ای است که از نظر وضع و برگزی از زمانهای قدیمی آن را بشنوید تا نام تازه‌نشده. طول سواحل این دریاچه در حدود 4،000 کیلومتر است که بیشترین طولی که 700 کیلومتر به کشور ایران تعلق دارد. طول این دریاچه در انتظار دریاچه-جنوبی حدود 1،000 کیلومتر، عرض آن در انتظار دریاچه-غربی به طور متوسط حدود 210 کیلومتر و ماحت آن در تراز آب 175-70 متر در مکانی به سمت آب دریاچه‌ای آزاد 284،000 کیلومتر مربع است [9].

از نظر عمق و شکل بستر این دریاچه به سه بخش شمالي، ميانی و جنوبی تقسیم می‌شود: شمالي 1-الف. بخش شمالي دراز مساحت 8،000 کیلومتر مربع، عمق متوسط 5-6 مت و حداقل عمق 10-15 متر است. مساحت بخش ميانی 138،000 کیلومتر مربع با شبکه است. این مساحت بخش جنوبی آن به سواحل ایران حتم می‌شود. عمق دریاچه-جنوبی حدود 1،684،000 کیلومتر مربع دارد. دریاچه-میانی به طوری که مساحت دریاچه-میانی حدود 1،684،000 کیلومتر مربع است [9].

1. 3. تحلیل مشاهدات میدانی دریای خزر

دریای خزر، برگوی خطاف و واقع در خاور و در ارتفاع جغرافیایی 44° تا ۴۵° ۰۰′ و ۱° ۰۰′ شرقی قرار گرفته است. به طوری که توسط کشورهای ایران،
به اینکه گرadianهای قائم کمتر هستند، فواصل مکانی اندادگیری بهبودی است.

شکل ۱-۲، نمودارهای قائم شوری را برای این‌گونه‌های مختلف از ۱ تا ۹ نشان می‌دهد. همان طور که ملاحظه می‌شود، به طوری یکتایی و پیوسته به این‌گونه‌های مختلف (به دامنه‌ای از ۲۰ درجه) تغییر می‌کند.

heshtand و پوشش نسبتی خورشیدی از ساختار قائم ابی‌های مبنا دریای خور را اجرایی می‌نماید. در هر این‌گونه، انداده‌گیری تا عمق حدود ۲۰۰ متر در جهت نیز فاصله مکانی نسبتی کم در حدود ۳-۵ متر انجام شده است. اما برای عملیات پیش‌بینی، با توجه
شکل 3. نیم‌رخی‌های قائم دما برای ایستگاه‌های مختلف از 1 تا 9 (برای بررسی واضح به اندازه‌های ایستگاه 2 و 10 و ایستگاه 3 دو واحد و ... اضافه شده است).

با چگالی پنالتی (σθ) ثابت قابل مشاهده می‌باشد. البته در این شکل اندیزه‌های رسما شده مربوط به چگالی پنالتی است. طوری که با توجه به رابطه ما بین چگالی پنالتی (σθ) و چگالی (ρ) (یعنی (ρ − ρ0) = −(ρ − ρ0)σθ = σθ)، می‌توان با تقریب خوبی، تغییرات چگالی پنالتی را با تغییرات چگالی، مناسب دانست.

T، S، ρ و σθ از ایستگاه‌های جنوبی به طرف ایستگاه‌های شمالی در شکل‌های 5 (الف، ب، ج) ارائه شده است. کوانته‌های رسما شده نشان می‌دهد که طرف شمال مقدار T و S، ρ و σθ در ستونی آب به طرف شمال کمالی مشهود است. همین طور ساختار لایه‌ای نیز در آنها تا حدی مشخص می‌باشد. البته قابل ذکر است که لایه‌ای از پیکربندی (و چگالی ρ) در شوری (S) و دما (T) متفاوت ولی جیران کننده از نظر چگالی هستند. از طرفی با توجه به اینکه ضریب پرتوشلی‌های ρ0 به طرف شمال کمتر از مقدار آن برای گرمای (k1) است، نیاز به ایستگاه‌های کناری، در زمان حرکت گرما به دست داده ولی شوری خود را حفظ نمی‌کند. در نتیجه در نیم‌رخی‌های قائم شوری (شکل 3)، نیاز به نیم‌رخی‌های قائم دما شکل (شکل 2) ساختار لایه‌ای ایجاد شده برای مدتها طولانی در نظر می‌گیرد. پس اندازه‌گیری می‌روید که در نیم‌رخی‌های قائم شوری ساختار لایه‌ای بارز‌تر ظاهر شود.

شکل 4. نیم‌رخی‌های قائم چگالی را برای ایستگاه‌های مذکور نشان می‌دهد. در این شکل نیز ساختار لایه‌ای به ویژه لایه‌های
شکل ۵. ج) نمودار تغییرات افقی چگالی پنسل (کیلوگرم بر متر مکعب) بر حسب فاصله از ساحل جنوبی دریای خزر در اندازه‌های مختلف در محور جنوبی-شمالی در اعماق مختلف (به طوری که به ترتیب ۵۰، ۱۰۰، ۱۵۰،۲۰۰ و ۲۵۰ متر می‌باشد).

شکل ۵. ب) نمودار تغییرات افقی شوری بر حسب فاصله از ساحل جنوبی دریای خزر در اندازه‌های مختلف در محور جنوبی-شمالی در اعماق مختلف (به طوری که به ترتیب ۵۰، ۱۰۰، ۱۵۰،۲۰۰ و ۲۵۰ متر می‌باشد).

شکل ۶. نمودار تغییرات افقی چگالی برای ایستگاه‌های مختلف از ۱ تا ۱۹ برای بررسی و ابزار به اندازه‌های ایستگاه ۲ بک واحد ایستگاه ۳ در واحد و …. اضافه شده است.

Potential density (kg/m³)

Potential density (kg/m³)
چند نمایش، شماره ۴

علي اکبر بیدختی و اشرف‌نامه شکیباغی

طور میانگین در جهت شمال-جنوب هستند. دارای تغییرات موجی شکل نیز می‌باشد. تغییرات نوسانی این پارامترها در افق ساختارهای موجی را به ویژه در حوضه جنوبی تا عمق تقريبي

نسبتاً زیاد (حدود ۳۰ متر) است. اما روند تغییرات بیافزایشی در عمق‌های مختلف نشان می‌دهد که ساختارهای موجی در نواحی

۲۰ تا ۳۰ متری دارای دمای تغییرات شدیدی هستند و همچنین

این تغییرات روز پیش به طرف حوضه جنوبی افزایش می‌یابد

اما به طرف حوضه شمالی، از حرکات موجی و تغییرات قبلی

آن، کامی می‌شود. لازم به ذکر است که برای بررسی بهتر، باید

فواصل ایستگاه‌های ساختارهای کمتر که در این

اندازه‌گیری انجام شده است. جون در این اندازه‌گیری اثرات

ظرف‌سازند همان‌گونه‌گاهی مکانی با عمق موج بیشتر در

هم‌هم‌کاری با عده موج کمتر استفاده می‌نماید است

آموج وانی در شارهای یا چنین بندی چگالی بیوضه،

دارای ساختار می‌باشد. به طوری که در جهت

قائم دامنه تغییرات سرعت ذره شاره، به طور نوسانی تغییر

می‌کند (مثلاً دامنه تغییرات مولفه قائم سرعت، مناسب با

معنی یافته به طوری که قائم مؤلفه عدده موج در جهت قائم

است). از طرفی سامان این امواج به صورة N

می‌کند (۱۲) به منظور مطالعه ساختارهای لایه‌ای در

نیم‌خورایی قائم کم‌سیمی فیزیکی، گرادیان قائم محیط آنها برای

T, S, N را تشکیل می‌دهد. این تغییرات

و آماده است. در اغلب آنها ضخامت لایه‌ای در حدود

۱۰ متر مشاهده می‌شود. اینجا این لایه‌ها مشاهده

عوامل زیر قرنده‌اند:

الف- پیدایش هم‌فازی پخش دوگانه

ب- لایه‌های بازی ساختار فیزیکی امواج درونی [۱]

جهت تغییر اثر پخش دوگانه درست آمیزش قائم

نسبت چگالی [۱]

برای ایستگاه‌های مورد نظر محاسبه و

\[\text{Fr}_{\text{MOG}} = \frac{U}{N^2} \]

و عدد فوریه به ان $N = \frac{v}{v_{\text{MOG}}}^{\frac{1}{2}}$ آب و

سابط نیستن آب می‌باشد. روي پیش‌نامه پرک

می‌شود. به ویژه این شرایط، به ادامه ایجاد امواج درونی

و افزایش نیستن. ساختار نفوذ کننده

می‌باشد که احتمالاً توسط امواج درونی، به سمت حوضه

جنوبی ایجاد شده‌اند. لیبی پیش‌نامه داشته که چگالی

سطحی ناشی از در این آب روي پیش‌نامه آب‌نارین نیز می‌توانند

با ساخت این نیافته در نواحی که عمک قردن است. این

جریان‌ها ایجاد می‌گردد در نواحی درست نیست. اما در

نواحی سطحی

شباهت می‌باشد می‌باشد. ممکن است با توجه به

شکل‌های U * نیست. چگالی بیوضه، به طور

آب و U، U* در آب خواهد. بودن به

برای شرایط طوفانی ممکن است، به طور

در شکل‌های ۶ (الف، ب، ج) نیست. این ساختارهای که

عمق این لایه در حوضه یا اکثر حوضه این متوسط می‌باشد.

یک مثال می‌باشد. تغییرات اضافه از ۱۰ به

مر بیشتر بوده‌است. به سمت باید با روند

پیش‌نامه به دنیا در این شکل‌های

شکل‌های ۵ (الف، ب، ج) می‌باشد. این

نیست که سطح همواره هم دما، هم شوری و همچنین هم

چگالی پن‌سیسی احتمال لایه‌ای از چگالی‌های شارهای در

عمق

ستون آب روی پیش‌نامه بیوضه.

تغییرات افقی شماره ۴- جنوبی در عمومیاً مختلف در

شکل‌های ۵ (الف، ب، ج) می‌باشد. این

نیست که سطح همواره هم دما، هم شوری و همچنین هم

چگالی پن‌سیسی احتمال لایه‌ای از چگالی‌های شارهای در

عمق

ستون آب روی پیش‌نامه بیوضه.
شکل ۵، طرح ج - خطوط هم شوری، هم دما و هم چگالی در امتداد محور جنوبی - شمالی دریای خزر (سطح آب درای عمق صفر است).

دهندگی همرفت پخش دوگانه خیلی کم، در ستون آب است.

با این حال، این نوع تغییرات خاص ممکن است باعث تغییرات دما و چگالی شود. در این مقاله، تغییرات دما، تغییرات چگالی و تغییرات شوری را به همراه این تغییرات، در شکل ۵ نشان می‌دهد. در شکل ۵، خطوط هم شوری، هم دما و هم چگالی در امتداد محور جنوبی - شمالی دریای خزر (سطح آب درای عمق صفر است) نشان داده شده است.

به طوری که α ضریب تغییر چگالی ناشی از تغییر دما، β ضریب تغییر چگالی ناشی از تغییر شوری و ΔT تغییرات دما، ΔS تغییرات شوری هستند، نسبت چگالی با رد در حد ΔT نشان می‌دهد. در شکل ۵، خطوط هم شوری، هم دما و هم چگالی در امتداد محور جنوبی - شمالی دریای خزر (سطح آب درای عمق صفر است) نشان داده شده است.

در شکل ۵، آمده است: R_p به صورت زیر تعیین می‌شود:

$$R_p = \alpha \frac{\Delta T}{\beta \Delta S} = \frac{\alpha \Delta T / \Delta S}{\beta}$$

در این نمود، α ضریب تغییر چگالی ناشی از تغییر دما، β ضریب تغییر چگالی ناشی از تغییر شوری و ΔT تغییرات دما، ΔS تغییرات شوری هستند.
Graphs and Data

Equations and Formulas

Textual Content

شکل 8. گرادیان قائم محلی دما برای ایستگاه‌های ۴ (حوضه جنوبی)، ۵ (روی پشتی) و ۶ (حوضه میانی). (برای بررسی واحدهای اندازه‌گیری، ۴ یک و ۵ و ۶ دو واحد اضافه شده است.)

شکل ۹. جریان قائم محلی شوری برای ایستگاه‌های ۴ (حوضه جنوبی)، ۵ (روی پشتی) و ۶ (حوضه میانی). (برای بررسی واحدهای اندازه‌گیری، ۴ یک و ۵ و ۶ دو واحد اضافه شده است.)
شکل 10. تیم‌ریز قائم نسبت چگالی برای ایستگاه‌های 2 (حوزه جنوبی)، 5 (روی پشت)، 6 (حوزه میانی) اعماق بر حسب متر می‌باشد.

حوزه‌بسته جنوبی می‌تواند باعث تحریک امواج درونی شود. به طوری که در مشاهدات آزمایش‌گاهی هم نشان داده شده است [14]. مدل‌های قائم این امواج درونی که مخابک به لایه‌های میانی و دریایی (罩) در حوزه جنوبی در سطح جریان خروجی به لایه‌های میانی و سطح خروجی به حوزه جنوبی را به صورت سطحی می‌تواند به ایجاد شدگی در جریان خروجی اعمال کند. ناشی از پلوام در یک محیط سطحی براساس رابطه ۲۴ وانگ و همکاران) عبارت است از:

\[\lambda = \frac{\nu d H E}{W} \]

(۲)

در این رابطه H عمق نفوذ جریان خروجی است که در اندازه‌گیری میانگین آب روی پشت می‌باشد و حدود ۱۵۰ متر است، به لایه‌بندی جریان خروجی است (که در اینجا می‌تواند به لایه‌بندی افقی جریان شناوری باشد) به معنای حزین در روی پشت‌های محدودیت زیر عمق دارد و که از حدود ۱۰ کیلومتر در این رابطه q ضریب درون آمیختگی پلوام می‌باشد که حدود ۴/۸ است. با جایگذاری این مقادیر در رابطه (۲) می‌توان به محاسبه می‌تواند با ضخامت لایه‌های مشاهده شده در نمودرخایش شکل ۷ مطابقت می‌نماید. این لایه‌ها همان طور که

\[F = \frac{q g'}{W} \]

(۳)

که در آن F نرخ شناوری پلوام می‌باشد و برای استفاده با

\[U = \frac{q g'}{W} \]

(۴)

در این رابطه q ضریب درون آمیختگی پلوام می‌باشد که حدود ۴/۸ است. با جایگذاری این مقادیر در رابطه (۲) می‌توان به محاسبه می‌تواند با ضخامت لایه‌های مشاهده شده در نمودرخایش شکل ۷ مطابقت می‌نماید. این لایه‌ها همان طور که

\[F = \frac{q g'}{W} \]

(۴)

که در آن F نرخ شناوری پلوام می‌باشد و برای استفاده با

\[U = \frac{q g'}{W} \]

(۴)

در این رابطه q ضریب درون آمیختگی پلوام می‌باشد که حدود ۴/۸ است. با جایگذاری این مقادیر در رابطه (۲) می‌توان به محاسبه می‌تواند با ضخامت لایه‌های مشاهده شده در نمودرخایش شکل ۷ مطابقت می‌نماید. این لایه‌ها همان طور که

\[F = \frac{q g'}{W} \]

(۴)

که در آن F نرخ شناوری پلوام می‌باشد و برای استفاده با

\[U = \frac{q g'}{W} \]

(۴)

در این رابطه q ضریب درون آمیختگی پلوام می‌باشد که حدود ۴/۸ است. با جایگذاری این مقادیر در رابطه (۲) می‌توان به محاسبه می‌تواند با ضخامت لایه‌های مشاهده شده در نمودرخایش شکل ۷ مطابقت می‌نماید. این لایه‌ها همان طور که

\[F = \frac{q g'}{W} \]

(۴)

که در آن F نرخ شناوری پلوام می‌باشد و برای استفاده با

\[U = \frac{q g'}{W} \]

(۴)

در این رابطه q ضریب درون آمیختگی پلوام می‌باشد که حدود ۴/۸ است. با جایگذاری این مقادیر در رابطه (۲) می‌توان به محاسبه می‌تواند با ضخامت لایه‌های مشاهده شده در نمودرخایش شکل ۷ مطابقت می‌نماید. این لایه‌ها همان طور که

\[F = \frac{q g'}{W} \]

(۴)

که در آن F نرخ شناوری پلوام می‌باشد و برای استفاده با

\[U = \frac{q g'}{W} \]

(۴)

در این رابطه q ضریب درون آمیختگی پلوام می‌باشد که حدود ۴/۸ است. با جایگذاری این مقادیر در رابطه (۲) می‌توان به محاسبه می‌تواند با ضخامت لایه‌های مشاهده شده در نمودرخایش شکل ۷ مطابقت می‌نماید. این لایه‌ها همان طور که

\[F = \frac{q g'}{W} \]

(۴)

که در آن F نرخ شناوری پلوام می‌باشد و برای استفاده با

\[U = \frac{q g'}{W} \]

(۴)

در این رابطه q ضریب درون آمیختگی پلوام می‌باشد که حدود ۴/۸ است. با جایگذاری این مقادیر در رابطه (۲) می‌توان به محاسبه می‌تواند با ضخامت لایه‌های مشاهده شده در نمودرخایش شکل ۷ مطابقت می‌نماید. این لایه‌ها همان طور که

\[F = \frac{q g'}{W} \]

(۴)

که در آن F نرخ شناوری پلوام می‌باشد و برای استفاده با

\[U = \frac{q g'}{W} \]
نظر به جریان‌های توضیحی در حوزه جنوبی خزر حدود 10^{-10} به دست می‌آید که بعد سرعت جریان از حوزه میانی به جنوبی است.

4. بحث و نتایج

جریان نفوذی گرانشی در دریاها، یکی از عوامل ایجاد سختاری‌های ماژولار در سطح دریا است. ترتیب شناوری باعث نفوذ آب را به چگالی متوسط به دلیل محیط چنین بندی شده می‌شود و این جریان ممکن است در هر یک از شناوری‌های کم یا زیاد نسبت به سطح محیط باشد. همچنین سختاری در حال دوم لاشه لاشهی نفوذ آب در آن‌ها ممکن است افزایش دهد. در موارد فوق متن لزوم اجرای گرد [15] آمده است. بنابراین این نتایج از تحقیق در حالی نفوذ آب بوده است.

عملیات مولکولی و جوهرانه‌ای از جریان‌ها، اختلالات ستون آب یا تنیدن آن می‌تواند در حالت سطحی باعث نفوذ آب در دریا (که می‌تواند سنن آب را به طرف مخلوطی کند) و در نتیجه پدیده ایجاد شده توسعه یابد.

1- سرعت جریان خروجی پلوت در حوزه جنوبی خزر حدود 10^{-10} با در دست می‌آید که بعد سرعت جریان از حوزه میانی به جنوبی است.

2- یکین از عوامل ایجاد سختاری‌های ماژولار در سطح دریا است. ترتیب شناوری به دلیل محیط چنین بندی شده می‌شود و این جریان ممکن است در هر یک از شناوری‌های کم یا زیاد نسبت به سطح محیط باشد. همچنین سختاری در حال دوم لاشه لاشهی نفوذ آب در آن‌ها ممکن است افزایش دهد. در موارد فوق متن لزوم اجرای گرد [15] آمده است. بنابراین این نتایج از تحقیق در حالی نفوذ آب بوده است.

3- تحقیق در حالی نفوذ آب به طرف مخلوطی کند و در نتیجه پدیده ایجاد شده توسعه یابد.
شکل 11. تصویری از لایه‌های برای ایجاد شده در آزمایشگاه توسط پلیمر سرزرگ شده از روی شیب درون مخزن [یصدختی و نوروزی، 2004].

شیب‌های خاکی اغلب حوضه عامل تغییرات می‌باشند. مدل‌های شیب تنهایی در آزمایشگاه از کم‌مخزن تشکیل پنجره، می‌باشد تا تکنیکی سطح آزاد مخزن امتداد یابد. اما در گسترش آنها به طرف بالا، گرانیوی سبب استحکام شده و مانع رسیدن آنها به سطح آزاد می‌شود.

ضخامت لایه‌ها در آزمایشگاه حدود 3 تا 5 سانتی‌متر مشاهده شده است. اما ضخامت لایه‌ها در آبخیز دریای خزر (محیط واقعی) حدود 10 تا 20 سانتی‌متر است. ساختار لایه‌ای عمده‌ای در قسمت زیر آنیا آمکشته وجود دارد و تعداد لایه‌ها از 3 تا 7 متغیر است. لایه‌های اسید شده سبب بخش ماده آلی و همچنین اکسیژن موجود درون آبخیز خزر می‌شود. این سیستم از نظر میکرو دارای اهمیت واقعی است. به طوری که وجود ساختار آبخیز اثر گذار بر ضریب پخش کرده و بیش از انتقال کرده در آبخیز خزر می‌شود و بین میزان نباید آنها نیز مؤثر است. همچنین وجود لایه‌های مختلف آب با چگالی‌های مختلف سبب تغییرات انتشار امواج صوتی که از نوع امواج مکانیکی است می‌گردد. به طوری که هر قدر آن، چگالی بیشتر، سرعت صوت در آن لایه بیشتر می‌شود. پس در لایه‌های مختلف آب، سرعت صوت نیز تغییر یافته، در نتیجه هنگام عبور صوت از یک لایه به لایه دیگر پیدا شکست برای امواج صوتی روی می‌دهد.

جنوبی سرزرگ شده و آب حوضه میانی به اعمت حوضه جنوبی انتقال می‌یابد. اگر آب از اعمت زیاد حوضه جنوبی به سمت حوضه میانی جاری می‌شود، پس با توجه به خطوط هم چگالی، کرده آب از آبخیز بالایی حوضه میانی به سمت حوضه جنوبی و سپس آب از اعمت تندیکی بستر حوضه جنوبی به سمت حوضه میانی جاری می‌شود. قابل توجه است که این نتیجه با نتیجه دست آمد از شبه‌مایی فیزیکی نیز مطابقت دارد. شکل 11، لایه‌های بریج ایجادشده توسط پلیمر سرزرگ شده از روی شیب را در یک میکرو به رنگ‌بندی چگالی یافته و نشان می‌دهد. در این مقادیر کمی بالور برخی‌گان تنظیم به طور قائم درون آب ریخته شده است. پس از گذشت زمان، خط رنگی ناشی از بالور به صورت منحی که در شکل مشاهده می‌شود در سرآیند به طوری که شکل لایه‌بریج شده نمایان می‌شود [14]. یعنی جریان ناشی از پلیمر از ساختار آبخیز می‌گردد.

تشکیل مدهای بهبود امواج درونی و گسترش آنها در محیط آزمایشگاه و محیط واقعی هم‌بسته و تطابق خوبی با نشان می‌دهند. در این تشکیل امواج درونی وجود عماد تحريكی کننده از لایه است، به طوری که در آزمایشگاه، پلیمر آب شور موجب تشکیل مدهای بهبود از کف مخزن شده است. اما از خرید جریان شش‌شاخ تندیکی کف روی قسمت

5. نتیجه‌گیری

عامل اصلی ایجاد جریان مایل‌های بین و نحوه‌ی دریای خزر، گردانان افقی چگالی است، به طوری که این فرآیند امواج درونی ایجاد شده و ویژگی این مایل‌های اثر می‌گذارند و نشان وجود ایجاد امواج درونی ساختار لاپهای مشاهده شده می‌باشد. وجود ساختار لاپهای منبع ایجاد بیبیندن شکست امواج صوتی

مراجع