پاز توزیع ناخالصی آرسنیک (As) در رشد گرمایی و سرعت رشد اکسید سیلیسیم

داود آقا علی گل ۱، علی باقی زاده ۲ و داریوش فتحی ۳

۱ دانشگاه خواجه نصیرالدین طوسی - تهران خیابان شریعتی - خیابان جلال، دانشکده علوم - گروه فیزیک

دوره مطالعه: ۸۳/۴/۶

چکیده

در این مقاله نحوه پاز توزیع ناخالصی آرسنیک و تاثیر آن بر روی سرعت رشد اکسید سیلیسیم به روش اکسیداسیون گرمایی (در دمای ۹۰۰ °C و با استفاده از یخبار آب) رشد داده شده است. بررسی می‌کنیم ناخالصی آرسنیک به وسیله کشت و افزودن آن به دو نمونه سیلیسیم با جهت بلوری (001) کاشته شده و از ناخالصی آرسنیک با (RBS) قطعه‌های ۵×۱۰۰۰ سیلیسیم به وسیله اندوزه‌گیری ضخامت اکسید به روش پرگشته را بهترین (RBS) قطعه‌های ۵×۱۰۰۰ سیلیسیم به وسیله اندوزه‌گیری ضخامت اکسید به روش پرگشته را بهترین (RBS) قطعه‌های ۵×۱۰۰۰ سیلیسیم به وسیله اندوزه‌گیری ضخامت اکسید به روش پرگشته را بهترین (RBS) CVD

واژه‌های کلیدی: پاز توزیع، ضخامت، ناخالصی، آلکسیداسیون گرمایی، کشت پیوندی، پاز توزیع ناخالصی

۱. مقدمه

اکسیداسیون سیلیسیم دارای کاربردهای اولیه در صنعت ساخت مدارهای الکترونیکی مجمع (IC) می‌باشد. بنابراین فهم دریافت اکسید SiO₂ بسیار مهم است. روشهای مختلف برای اجای خیس‌کن یک‌یا اکسید سیلیسیم وجود دارد. ویل هنوز هم مهترین آنها روز جنگم دادن و وف‌سیلیسیم در محیط PVD دارای کاسپیانی می‌باشد. روش‌های دیگر اکسیداسیون مانند CVD و تیز‌های با توجه به SiO₂

فرمول نهایی می‌تواند به‌طور کلی مشاهدات قبلی نشان داده است با

جو می‌گذارد (۲۰۱۲) در تکنولوژی نیمه‌های متولی اسروزه از با جهت کرتیسالی (۱۰۰۰) و (۱۰۰۰) دارای آکسیدی کمتری در مقایسه با جهت (۱۱۱) می‌باشند. در صورتی که سرعت رشد Si در جهت (۱۰۰۰) نسبت به برای جهت (۱۰۰۰) است [۱]. یکی از مهم‌ترین مدل‌های که برای سیمانتیک رشد SiO₂ است [۲]. در این مدل فرض می‌سازند که
عمل اکسیداسیون به وسیله پخش عوامل اکسید کننده دچار لایه اکسید و سپس ترکیب اکسیدز بین اتمهای سیلیسیم
در فصل مشترک SiO$_2$ - Si- به صورت می‌گردد و باعث ایجاد می‌شود. که ضخامت لایه ایجاد شده از رابطه زیر به
دست می‌آید:

$$x^i + Av_i = B(t + r)$$

که در آن x: ضخامت لایه اکسید و t مدت زمان اکسیداسیون، B و A هستند.

برای دو حالت متناهی اکسیداسیون بین سیلان و اکسیداسیون
(رابطه 2) و زمان‌نهایی اکسیداسیون بین طوالتی (رابطه 3)،

یک طبقه‌ای ضخامت بر حسب زمان به روابط ساده‌ای تبدیل می‌شود:

$$x = \frac{B}{A} \left(t + r\right) ; \quad t << A^i/\left(B/A\right)$$

$$x^i = Bt ; \quad t >> A^i/\left(B/A\right)$$

که رابطه 2 را مدل خطی و رابطه 3 را مدل سه‌بعدی می‌نامند.

بر هر هکتیون عوامل اکسید کننده در فصل مشترک محدود
می‌شود. در حالی که در مدل سه‌بعدی ضرب عوامل اکسید کننده باعث محدود شدن رشد لایه اکسید کننده
از لحاظ فیزیکی تایید شده است. B را می‌توان بصورت انتری فعال سازی
با عبارت میزان انرژی لازم برای ترکیب و B

$$x^i = Bt \quad \left(t \gg \frac{A^i}{B/A}\right)$$

در نظر گرفته می‌شود.

کشت (As) در این مقاله نحوه بازتویز ناخالصی آرسنیک

شده در سیلیسید در حین اکسیداسیون گرمایی سیلیسیم را در

زمان‌سخت متفاوت اکسیداسیون و در زمان‌سخت توانایی مناسب و

همچنین تأثیر آن بر سرعت رشد اکسیداسیون توسط

روش برگشتی انتزاعی (RBS) بررسی می‌گردد.

کشت اکسیداسیون در مدل سه‌بعدی که مشاهده می‌گردد هر چه زمان اکسیداسیون

طولانی تر گردد قله مربوط به آرسنیک جمع‌تار و به عمق

سفر

3. نتایج و بحث

شکل‌های 3 و 4 نتایج حاصل از اندازه‌گیری‌های برای

As/cm2 و 5\times1019 As/cm2 نمونه‌ها کشت شده با در

ماهیت طوری که مشاهده می‌گردد هر چه زمان اکسیداسیون

طولانی تر گردد قله مربوط به آرسنیک جمع‌تار و به عمق

سفر

(As) کشت

شده در سیلیسید در حین اکسیداسیون گرمایی سیلیسیم را در

زمان‌سخت متفاوت اکسیداسیون و در زمان‌سخت توانایی مناسب و

همچنین تأثیر آن بر سرعت رشد اکسیداسیون توسط

روش برگشتی انتزاعی (RBS) بررسی می‌گردد.

کشت اکسیداسیون در مدل سه‌بعدی که مشاهده می‌گردد هر چه زمان اکسیداسیون

طولانی تر گردد قله مربوط به آرسنیک جمع‌تار و به عمق

سفر
شکل ۱. نموداری از توزیع As در روش آزمایشگاهی (۵۰۰۰ کلر) در شرایط آزمایشگاهی.

شکل ۲. نموداری از توزیع As در روش آزمایشگاهی (۵۰۰۰ کلر) در شرایط آزمایشگاهی.

پیشنهاد راهنما می‌شود.

با توجه به اینکه ناخالصی‌های موجود در سیلیسیم در هنگام اکسیداسیون با توزیع می‌شوند، با ایندکس توزیع As را در شرایط آزمایشگاهی بررسی نماییم [۹].

در حین اکسیداسیون گرمایی سیلیسیم، ناخالصی‌های موجود در فصل مشترک با سیلیسیوم Si-SiO۲ موجود در سیلیسیم با ناخالصی موجود در SiO۲ را به عنوان ضریب جدایی به معنای مانند یک باشد ناخالصی در اکسید و سرعت حرکت فصل مشترک (ضریب رشد اکسید) با گسترش دارد. زمانی که ضریب جدایی کمتر از یک باشد ناخالصی در داخل اکسید حلن می‌شود. اما در حالتی که ضریب جدایی بزگتر از یک باشد، مانند ناخالصی موجود در As موجود در سیلیسیم، ناخالصی‌های موجود در سیلیسیم در زمان اکسیداسیون گرمایی در فصل مشترک جمع می‌شوند. بنابراین با توجه به اینکه مقدار ضریب Si-SiO۲ (پرخ (۴۰۰۰) در دمای As (D) در دمای ۵۰۰۰ کلر یا اکسید (SiO۲) در دمای با توجه به اینکه غلظت ناخالصی‌ها نیز یستگی دارد، یا این اثبات کننده گردش غلظت‌های سطحی معمایی در از ۱۱۰۵ می‌باشد در مورد ناخالصی‌های اکسیداسیون که استفاده شده، مالگش است.
شکل ۳. نتیجه‌گیری‌های آرسنیک در حین اکسیداسیون و در زمان‌های مختلف. همانطور که مشاهده می‌شود با افزایش زمان اکسیداسیون، قله آرسنیک تبیز می‌گردد.

اگر فرض کنیم که زمان اکسیداسیون ثابت و سرعت رشد اکسی‌دز در اکسیداسیون بخار آب باشد داریم:

\[\sqrt{D_{t}} \approx \sqrt{\frac{t}{A}} \]

محاسبات نشان می‌دهد به عنوان مثال در دمای ۹۰۰°C و زمان ۲۰ دقیقه، مقدار حرکت آرسنیک درون اکسید به بیشتر کم و در حداکثر به ۴۰۰Å (۱۰۰Å) در و شیوه Si در این مقدار برای رشد اکسید به ۱۲۰Å است که مطالب گفته شده در بالا را تایید می‌کند. بنابراین ناحیه به صورت Si/۳۰۰Å به خواص داشته طیف‌هایی که به وسیله RBS نمونه‌ها به دست آمده‌اند این امر را تایید می‌کند.

شکل‌های ۱ و ۲ طیف‌های حاصل را برای نمونه‌هایی که در زمان‌های مختلف اکسید شده‌اند با یکدیگر مقایسه می‌کند. همان طور که مشاهده می‌شود هر چه زمان اکسیداسیون طولانی‌تر گردد فصل مشترک Si/۳۰۰Å با بین ناحیه رانده می‌شود و به شکلی است افزایش تریا به نسبت به ناحیه بدون‌ناخال‌سازی

شکل‌های ۴ و ۵ مشاهده می‌شود که زمان اکسیداسیون کم و زمان اکسیداسیون بیشتر با توجه به قله آرسنیک تبیز می‌گردد.
شکل 5: نمودار ضخامت‌های اندازه‌گیری شده بر حسب زمان که با استفاده از روش RBS سرعت رشد اکسید در حضور ناخالصی A5 نشان داده شده است.

رشد سهمی برای دوره‌های بدون ناخالصی و بدون ناخالصی نشانه‌ای می‌باشد که تعداد اندک تغییر کند. اما در زمان‌های کم اکسی‌سیلن، عامل اصلی A5 جمع شده در فصل مشترک سطحی SiOx-Si رشد اکسید می‌باشد. در واقع جمع شده در فصل مشترک می‌تواند تغییرات در سرعت واکنش سطحی A (ایجاد کند که تأثیر مستقیم آن به صورت تغییرات در ظاهر می‌شود. پس می‌توان نتیجه گرفت یکی از عواملی که باعث افزایش سرعت رشد اکسید شده است افزایش سرعت واکنش سطحی فصل مشترک یا کاهش میزان A می‌باشد که در زمان‌های کوتاه اکسی‌سیلن می‌باشد.

اگر در رابطه به دست آمده x(t) + A = B

به دست آمده اوریم خواصی این دستیابی

\[x = B(t) - A \]

که مشخص است، شیب معادله 5 برای B و غرض از مبدأ برای A) خواهید بود. محاسبه نشان می‌دهد مقدار B) بر حسب واحد (μm/min) که همان شیب رابطه 5 می‌باشد برای نمودارهای کشته شده با آرسنیک هزار برابر 380/100 به دست می‌آید.

شکل 6: سطحی RBS به دست آمده از ناحیه کشت شده و ناحیه بدون ناخالصی بر یک نمونه بعد از اکسیداسیون گرمایی در دمای 400°C برای زمان اکسیداسیون یک‌سیان افزایش ضخامت اکسید تنک‌شکل شده در ناحیه کشت شده نسبت به ناحیه بدون ناخالصی مشخص است.

تشان می‌دهد.

شکل 5 اندازه‌گیری‌های ضخامت اکسید برای نواحی کشت شده و بدون ناخالصی را برای درجه‌های مختلف بر حسب زمان نشان می‌دهد. همان طور که مشاهده می‌گردد با افزایش دما در ناخالصی ضخامت لا اکسید افزایش می‌یابد. ضخامت‌های به دست آمده از یک‌سیان (Ellipsometry) نشان می‌دهد که در توافق خوبی با نتایج حاصل از RBS می‌باشد که اینجا نشان داده شده است.

همچنان که از شکل 5 می‌توان مشاهده نمود سرعت رشد اکسید در حضور A5 در محصوله‌های تغییر کرد و بعد از آن ثابت ماند. این به عبارتی در نمودار ناخالصی A5 تأثیرگذار در افزایش سرعت رشد اکسید ندارد.

شکل 6 از رابطه (3)، مشخص است سرعت رشد اکسید در زمان‌های طولانی اکسیداسیون به مقدار ضربین پخش اکسیدون وابسته است. بنابراین ضربین پخش اکسیدون در دو حالت تغییر چشمگیری تاکید به و در نتیجه مقدار B (ضریب سرعت
عمق کم (Shallow Junction) که تنها مقدار کمی از آرسنیک در لایه اکسید حل شود. همچنین تأثیر ناخالصی As کشت شده بر سرعت رشد اکسید بررسی گردید و نشان داده شد که با افزایش داشتن ناخالصی، سرعت رشد اکسید افزایش یید می‌کند.

تشکر و قدردانی
در پایان لازم است تا خانم مهندس وطن خوانده که در بخش واندوزگر کمک‌های قابل توجه و صمیمیانه‌ای در انجام ادآورده کرده‌اند، همچنین از آقای مهندس غلامی در مرکز پژوهش فیزیک که در انجام آزمایش‌های بیشتری در حوزه نموده و نوشته می‌نماید.

مراجع