اثر تراكم ایستگاه و تفکیک منطقه‌ای در پراورد توزیع مکانی بارندگی روزانه
(مطالعه موردی بر روی بارندگی جنوب غرب ایران)

بهرام ثقفیان، سیما رحمی پنرآبادی **، حمید طاهری شهراهنی *** و جعفر غیومان ****
پژوهشکده حفاظت خاک و آبخیزداری

(دریافت مقاله: 1382/07/21 - دریافت نسخه نهایی: 1383/07/24)

چکیده - بارندگی یکی از متغیرهای اقلیمی است که به عنوان محور چرخه‌های هیدرولوژی از اهمیت زیادی برخوردار است. اصولا در مطالعات براورد و پیش‌بینی سیالاب در حوزه‌های متوسط و بزرگ و با مطالعات آلوگویی، غلبه بر تغییرات زمانی بارندگی، نیاز به بررسی تغییرات مکانی آن نیز هست. براورد تغییرات مکانی بارندگی روزانه بدون توجه به مقایسه و انتخاب روش‌های مناسب، می‌تواند از عوامل مهم ایجاد خطای در تعیین ورودی مدل‌های بارش-روش‌های پیش‌بینی نتواند بکار بگیرد. می‌تواند از جمله روش‌های پیش‌بینی بارندگی است. در این تحقیق، چند روش میانی‌ای برای براورد توزیع مکانی بارندگی روزانه جنوب غرب ایران مورد توجه قرار گرفت. برای مقایسه و ارزیابی روش‌ها، از گزارش‌های بارشی-زیربخشی (CV) استفاده شد. ارزیابی روش‌های مختلف برای براورد بارندگی روزانه نشان داد که روش TPS دارای بهترین نتایج است. نتایج نشان داد که این افزایش دقت در روش منطقه‌بندی خوش‌آمیزی بخش‌هایی از منطقه بندی بر اساس مرز‌های آب‌های دیکه می‌شود.

واژگان کلیدی: تحلیل خوش‌آمیز، تراکم ایستگاه، میانی‌ای، زمین‌آمار، بارندگی روزانه، اعتبار سنجی تفاوت‌آمیز، ایران

The Effect of Station Density and Regional Division on Spatial Distribution of Daily Rainfall

B. Saghafian, S. Rahimi Bandarabadi, H. Taheri Shahrbaenien and J. Ghayoomian
Soil and Watershed Conservation Research Institute

Abstract: Rainfall is one of the most important climatic variables in the hydrology cycle. In flood estimation as well as environmental pollution studies in medium to large watersheds not only must temporal pattern of rainfall be known, but also the knowledge of its spatial distribution is required. Estimation of daily rainfall distribution without comparison and selection of

- دانشیار پژوهشی ** - کارشناسی ارشد *** - دانشجوی دکتری **** - استادیار پژوهشی

استناد: 59 شماره 16.1 جلد اول شهربور 1384
suitable methods may lead to errors in input parameters of rainfall – runoff models. Interpolation methods are among the techniques for estimating spatial distribution of rainfall. In this study, Thin Plate Smoothing Splines (TPSS), Weighted Moving Average (WMA) and Kriging are applied to estimate spatial daily rainfall in the southwest of Iran. Cross validation technique is used for comparison and evaluation of the methods. The results of analysis with two different station density showed that the TPSS method with power of 2 is the most accurate method in estimating daily rainfall. Zoning of the region also increased the interpolation accuracy. Generally speaking, division of the region based on cluster analysis improves accuracy compared with division by inter basin boundaries.

Keywords: Cluster Analysis, Station Density, Interpolation, Geostatistics, Daily Rainfall, Cross Validation, Iran

يکه علائم

<table>
<thead>
<tr>
<th>فهرست علائم</th>
<th>C_o</th>
<th>C(h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل آنتی‌نتی</td>
<td>CV</td>
<td>DEM</td>
</tr>
<tr>
<td>فاصله بین ایستگاه‌ها</td>
<td>i</td>
<td>h</td>
</tr>
<tr>
<td>عکس مجزور فاصله ماهواره‌ای با گردان</td>
<td>GIDS</td>
<td></td>
</tr>
<tr>
<td>متر مربع مقایسه‌ی</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>بارامتر پریشی</td>
<td>α</td>
<td></td>
</tr>
</tbody>
</table>

کر. اگر چه محاسبات این روشهای سریع و آسان است ولی معایب و اشکالات آنها گاهی منجر به اگر طبیعی غیر قابل قبول و با دقت کم می‌شوند. از معایب این روشهای می‌توان به موارد زیر اشاره کرد. در روشهای مینگرس حساسیت موفیت‌ها به ایستگاه‌ها در نظر گرفته نمی‌شود و بیانی‌ها به نحوه پراکنش نقاط با مقدار معلوم در اطراف نقاط مجهول به‌داشت نمی‌شود. در این حالت وقتی که تغییرات بارندگی در منطقه می‌تواند اسکال در اعتماد نخواهد بود. ضمن آنکه توزیع مکانی بارندگی نیز به دست نمی‌آید. در روشهای عکس فاصله، اگر چه هر نقطه به طور مستقل در نظر گرفته می‌شود، ولی تابولوژی و موفیت‌ها نسبی نقاط در محاسبات لحاظ نمی‌شود و بیانی‌ها وزن نقاط گاه به فاصله

- مقدمه

برآورد میزان بارندگی در بسیاری از مطالعات هیبردژنیکی انجام نیافت است. لیکن به دلیل عدم اکتشاف کامل ایستگاه‌های اداره‌گری، بارندگی برای مناطق مابین ایستگاه‌ها با یاد مورد توجه قرار گیرد. ضعف در تعیین تغییرات مکانی بارندگی روشن‌سازی از عوامل مهم ایجاد خطاهای در پارامترهای مدل‌های بارش - بارود در کاربردهای پیشینی و طراحی باناش. به علاوه در برآورد بینایی دقت در بارود توزیع مکانی بارندگی اهمیت فراوانی دارد. روشهای مختلفی برای بارود توزیع مکانی بارندگی وجود دارد. از جمله روشهای کلاسیک معمولاً می‌توان به روشهای مینگرس حسابی، تابولوژی، هیبردژنیکی و روش استفاده از خطوط هم باران اشاره

استقلاال، سال 24، شماره 1، جلد اول، شهریور 1384

80
مرزی غرب، مارون - جراحی رهبر، طلسم و بخش‌های اصلی، شیوه‌های در دلگردگی رود، روند کل، شامل خلق فارس و میان‌بند در محدوده منطقه قرار دارند. مز شماره شرکت و میان‌بند به محدوده کنار خوزستان و در قسمت غربی محدود به مدار 49،815 است. این منطقه از لحاظ اقتصادی تحت‌تنوع و دارای اقیانوسی شکل بیابان، فراخوان، نیمه بیابان، دشت و منطقه مربوطان در بحث کلی از توجه راه و جهانی باران زایی که از جنوب، جنوب غرب و غرب وارد کشور می‌شوند منظور است. منطقه مورد نظر بخشی از رشته کوه‌های زاگرس مین می‌باشد. بنابراین، این منطقه مورد تحقیق و ساختار است. این استفاده از نقشه رسمی خطوط تراز ساختمان شهر است. طراحی نمودارهای برزگان در این محدوده مجموعا 247 ایستگاه است که تعداد 200 ایستگاه ماشین به وزارت نیرو و تعداد 47 ایستگاه مربوط به سازمان هواشناسی به پشت‌وپردازی ایستگاه‌ها در قسمت غربی منطقه است. در شکل (1) پراکش این ایستگاه‌ها نشان داده شده است.

3- روشهای میان‌بایین

در این منطقه، شیوه‌ها و همکاران

نشریه میان‌بایین شمار: (13) جند شریع پیشگویی، روزی متاحک و

کریپتک را برای پایان‌گذاری روز 14 اسفند (1369) در جنوب غرب ایران و با استفاده از داده‌های ایستگاه‌های سازمان هواشناسی (74 ایستگاه) آزمون کردن. نتایج آنها نشان داد که روش میان‌بایین متاحک

وزنی (WMA) و روش برای پایان‌گذاری SHMSS (TPSS) روزهای در این منطقه است. در این تحقیق نتایج روشهای

و روش میان‌بایین متاحک روزینی با نتایج بهترین روشهای تحقیق و

همکاران (13) به ازار تراکم یک‌برت‌اش (استگاه‌ها) در منطقه مقایسه

می‌شود. در شکل (3) نحوه پراکش بارش‌گذاری در روز 16 اسفند نشان داده شده است. بررسی توزیع بارش‌گذاری در این منطقه با

منطقه مورد مطالعه

منطقه مورد مطالعه در جنوب غربی ایران و شامل استان‌های خوزستان، بوشهر، چهارمحال و بختیاری و کهگیلویه و بیرجند است. منطقه این منطقه بین طولهای جغرافیایی 31° 43' تا 34° 70 و عرضهای 18° 70 شرقی و 37° 70 شمال واقع شده است. حدودهای آبریز کرخه، در، کارون،
شکل ۱ - منطقه مورد تحقیق در جنوب غرب ایران

شکل ۲ - نقشه مدل ارتفاعی رقمی (DEM) منطقه
هدف نامین نیازهای مطالعات ارزیابی وضعیت آلودگی بارانهای سیاه ناشی از جنگ کویت و افغانستان، هدف مطالعه، در ایران صورت گرفته است. روز ۱۶ اسفند به دلیل پیشرفت و درآمدهای برای بررسی توزیع میزان‌های انتخاب شد. در مطالعه کلی میانی‌ای به صورت مقدار معادله زیر است. نتایج توزیع روههای مختلف در پراورد فاکتور ونی معادله زیر است:

\[Z*(x) = \sum_{i=1}^{n} \lambda_i Z(x_i) \]

که در آن:
\(\lambda_i \): مقدار بارندگی در موقعیت معجله \(x_i \).
\(Z(x_i) \): مقدار بارندگی مشاهده شده در موقعیت \(x_i \).
\(x_i \): نقطه معجله در موقعیت.
\(\lambda_i \): مقدار وزن ایستگاه، \(i = 1 \).
\(n \): تعداد کل ایستگاه‌ها.
برای پراورد ناریب مقدار معجله‌های معادله زیر تابع برقرار باشد:

\[\sum_{i=1}^{n} \lambda_i = 1 \]

به هر یک از ایستگاه‌ها وزنی بر اساس فاصله در روش WMA به‌دست آمده است. این ارزیابی توسط همکاران و به‌طور کلی روز ۱۶ اسفند به دلیل بارندگی پیشرفت و درآمدهای برای بررسی توزیع میکانی انتخاب شد. مقدار معادله (۱) با استفاده از فرمول زیر محاسبه می‌شود:

\[\lambda_i = \frac{D_i - \alpha}{n} \]

که در آن:
\(\lambda_i \): وزن ایستگاه iام.
\(D_i \): فاصله ایستگاه iام تا نقطه معجله.
\(D_o \): فاصله بین ایستگاه ۱ام تا نقطه معجله.
\(\alpha \): توان وزن دهی.

از طرف دیگر روش TPSS نوعی کریکنسی است که تابع کوارایان آن به صورت زیر است [۱۴]:
کمتر مقداری برآورد شده نسبت به مقاله مشاهده می‌شود. در برآورد MBE و MAE که در آن مقدار نظر مثبتی را داشته‌ایم، با توجه به مقاله، نشان دهنده متفکری خلاصه برآورد شده‌ایم. این نشان دهنده اختلاف مقاله مشاهده مقداری برآورددهی است و لذا در جدول به‌کارگیری دست‌های یکپارچه دست‌های یکپارچه می‌کنیم.

5- تحلیل خشایای روشهای مختلف برای رده‌بندی مشاهدات یک جامعه به‌کار گرفته شده است. انتخاب یک روش به مرجع بودن یا مجهول بودن تعیین گروه‌ها هدف و نوع متغیرهای مورد اندازه‌گیری بستگی دارد. تحلیل خشایای برای تعیین گروه‌های مبتنی در داخل مشاهدات مورد استفاده قرار می‌گیرد [16]. تحلیل خشایای برای معیار معنی‌دار این است. در این مقاله از تحلیل خشایای سلسله مراتب [15] به دلیل مشخص نبودن تعیین گروه‌ها از قبل استفاده شده. در این روش با مجازی‌سازی طبقه‌های فرد از سایر افراد شروع و سپس گروه‌های بر اساس فاکتور تجمعی یا تقسیمی تشکیل می‌شوند. پس از تعیین فاصله که معمولاً به‌کمکی از روش‌های اقلیم‌سازی، مربع اقلیم‌سازی و جنگنده شناختشده شده دیگر نزدیکی‌گری می‌شود گروه‌های همگن با یکدیگر از روش‌های نزدیک‌ترین همسایگی، ارتباط بین گروه‌ها، در این روش استخراج می‌شود. برای Ward's آزمون صحت گروه‌بندی از روش تحلیل تابع تک‌عامل استفاده شد. این یک روش زمانی که تعداد و اعضای گروه‌ها مشخص باشد برای بیشترین صحت گروه‌ها استفاده می‌شود [20].

C (h) = h^k . log (h) \[(2) \]

C (h=0) = 0

که در آن:

h: فاصله بین جفت ایستگاهها.

C (h): تابع کوواریانس.

θ: پارامتر برای که

m-l = K

4- روشهای مختلف نیاز به ارائه روش‌های به‌نحوی تکامل‌شده می‌شود. این روش یک نکته دارد که برای روشهای ارائه می‌شود. به‌طور کلی، این روش‌ها به‌طور کلی دو دسته مقدار واقعی برآورد شده، به دست می‌آید. با داشتن دو مقدار میزان مبتنی که در خط افراکس (MAE) و مبتنی خطای انحراف (MSE) برآورد شده، می‌توان به‌طور کلی مقدار مبتنی که در خط افراکس (MAE) و مبتنی خطای انحراف (MSE) برآورد شده، می‌توان به‌طور کلی مقدار مبتنی که در خط افراکس (MAE) و مبتنی خطای انحراف (MSE) برآورد شده، می‌توان به‌طور کلی مقدار مبتنی که در خط افراکس (MAE) و مبتنی خطای انحراف (MSE) برآورد شده، می‌توان به‌طور کلی مقدار مبتنی که در خط افراکس (MAE) و مبتنی خطای انحراف (MSE) برآورد شده، می‌توان به‌طور کلی مقدار مبتنی که در خط افراکس (MAE) و مبتنی خطای انحراف (MSE) برآورد شده، می‌توان به‌طور کلی مقدار مبتنی که در خط افراکس (MAE) و MBE

MAE = \frac{1}{n} \sum_{i=1}^{n} |Z_i - \bar{Z}(xi)| \[(5) \]

MBE = \frac{1}{n} \sum_{i=1}^{n} (Z_i - \bar{Z}(xi)) \[(6) \]

که در آن:

MAE: میانگین خطای انحراف (خطا).

MBE: میانگین خطای انحراف (انحراف).

اصولاً مناسب‌ترین روشهای دارای کمترین مقدار MAE و MBE است [15] و این می‌تواند به‌طور کلی مقدار خطا و انحراف ماند. بنابراین، پس از محاسبه مقدار خطا و انحراف ماند. بنابراین، پس از محاسبه مقدار خطا و انحراف ماند. بنابراین، پس از محاسبه مقدار خطا و انحراف ماند. بنابراین، پس از محاسبه مقدار خطا و انحراف ماند. بنابراین، پس از محاسبه مقدار خطا و انحراف ماند. بنابراین، پس از محاسبه مقدار خطا و انحراف ماند. بنابراین، پس از محاسبه MBE

این دو معیار به‌صورت نرمالیتی پاسخ نمی‌دهند، نشان دهنده اختلاف می‌باشد. استفاده، سال 1384 شماره 1 ،جلد اول ،شماره 4

65
جدول 1 - مقایسه حالت‌های مختلف از نظر تعداد و تراکم استکهوم‌های پارس سنجی

<table>
<thead>
<tr>
<th>تراکم (تعداد در هر 100 هزار کیلومتر مربع)</th>
<th>تعداد استکهوم (کم)²</th>
<th>وضعیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>27</td>
<td>حالت 1</td>
</tr>
<tr>
<td>53</td>
<td>300</td>
<td>حالت 2</td>
</tr>
<tr>
<td>61</td>
<td>347</td>
<td>حالت 3</td>
</tr>
</tbody>
</table>

جدول 2- مقادیر MBE و MAE (به میلیمتر) حاصل از روش‌های میان‌ایی برای پارس‌الدینی روز 16 اسفند 1391

<table>
<thead>
<tr>
<th>مکان</th>
<th>WMA-3</th>
<th>TPSS-3</th>
<th>TPSS-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBE</td>
<td>MAE</td>
<td>MBE</td>
<td>MAE</td>
</tr>
<tr>
<td>0/83</td>
<td>9/34</td>
<td>8/04</td>
<td>0/04</td>
</tr>
<tr>
<td>0/11</td>
<td>8/61</td>
<td>1/17</td>
<td>7/59</td>
</tr>
<tr>
<td>0/01</td>
<td>0/44</td>
<td>0/39</td>
<td>0/20</td>
</tr>
</tbody>
</table>

نواحی
- ناحیه 1: Basin-3
- ناحیه 2: Basin-4
- ناحیه 3: Basin-5
- ناحیه 4: Basin-6
- ناحیه 5: Basin-7
- ناحیه 6: Basin-8

جدول 3- نتایج بررسی قسمت‌بندی‌های مختلف منطقه در روش‌های میان‌ایی

<table>
<thead>
<tr>
<th>میانگین میلیمتری</th>
<th>میانگین میلیمتری</th>
<th>MBE (میلیمتر)</th>
<th>MAE (میلیمتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/7</td>
<td>3/9</td>
<td>3/3</td>
<td>3/2</td>
</tr>
<tr>
<td>3/9</td>
<td>3/2</td>
<td>3/1</td>
<td>3/0</td>
</tr>
<tr>
<td>3/2</td>
<td>3/0</td>
<td>3/5</td>
<td>3/8</td>
</tr>
<tr>
<td>3/8</td>
<td>3/8</td>
<td>3/3</td>
<td>3/7</td>
</tr>
<tr>
<td>3/8</td>
<td>3/7</td>
<td>3/2</td>
<td>3/1</td>
</tr>
</tbody>
</table>

منابع
- 1/7 میلیمتر مربع و سیل 1/7 برابر 176/2 میلیمتر مربع با شاخص تأثیر 2/8 درجه جغرافیایی است و برای واقع C با روش کلاس‌های A و B قابل استفاده می‌باشد.
- 1/7 میلیمتر مربع و سیل 1/7 برابر 176/2 میلیمتر مربع و سیل 1/7 برابر 176/2 میلیمتر مربع با شاخص تأثیر 2/8 درجه جغرافیایی بهترین انطباق را دارد.
- پس از شناسایی مناطق همگن A و B با روش کلاس‌های A و B نسبت توزیع بارش برای روز 16 اسفند 1369 در سه ناحیه با GIS و تعریف بارش با تراکم 1/2 به ترتیب C و D به ترتیب C و D منطقه این روش به روش TPSS و 1/2-15/0 برابر 1/2-14/0 میلیمتر اساسی است که تراکم به روش تراکم در این واقعه دقت کمتر دارد. لازم به ذکر است که بهترین مدل تطیف شده با واریانس 878/2 برابر C به مدل کروی و با مقدار 0 C اثر قطعه‌ای (اینفی قطعه‌ای) برابر 1384.
شکل ۴- نمودار مقادیر مشاهده‌ای و پراوردی در حالت ۳ (الف) روش ۳ (ب) و روش ۲ WMA-3 Case (الف) حالت ۳

R^2 = 0.5

R^2 = 0.71
روش
شکل ۵- نمودار تغییرات MAE و MBE در تراکم‌های مختلف برابر در نواحی روز ۱۶ اسفند ۱۳۶۹

شکل ۶- نقشه تقسیم منطقه بر اساس حوزه‌های اصلی منطقه

اشتقال، سال ۲۴، شماره ۱، جلد اول، شهریور ۱۳۸۴
شکل 7- نقشه تقسیم منطقه بر اساس تحلیل خوشه‌ای

شکل 8- تغییر نمایی پارنامی روز 16 اسفند ۱۳۶۹ در کل منطقه مورد مطالعه

برای بررسی عمق‌تر و انتخاب روش مناسب، این روش‌ها برای پارنامی روز ۲۲ اسفند ۱۳۶۹ تیز که دارای پراکنش و فراگیری کمتری نسبت به روز ۱۶ اسفند ۱۳۶۹ است، در ترکم‌های مختلف اجرا شد. نتایج ارزیابی نشان می‌دهد که در این روز تیز روش TPSS-2 دقت پیش‌رگه‌ای از مکند و افزاش ترکم باعث افزایش دقت پراکندگی می‌شود، شکل(۱۱). ضمن آنکه تقسیم برگی منطقه با روش تحلیل کلاستر دقت پراکندگی را

افزایش می‌دهد. لازم به ذکر است که در تقسیم منطقه به روش تحلیل کلاستر، مزه‌های روز ۱۶ اسفند تقریباً مشابه مزه‌های روز ۲۲ اسفند به دست آمد در مقایسه با نتایج سایر محفظان. نتایج این تحقیق با نتایج لیچ [۱۱] متفاوت است. وی از این به روش‌های WMA، کریگینگ و TPSS اسبابی، روش WMA را توصیه کرد. در این تحقیق روش WMA دقت پیش‌رگه‌ای دارد. از طرف دیگر جهتی و همسکاران[۱۱]
شکل ۹- نم نگیرنامه بارندگی روز ۱۶ اسفند ۱۳۶۹ (الف) در منطقه A B (در منطقه C و J) در منطقه
نیاز از روش برای افزایش متغیرهای اقلیمی روزانه در TPSS بیش از ۱۴۰۰ است. جنوب غرب کشور، روش TPSS با نوار ۲ لتسبیح با تأثیر مناسب برای روش و کریگینگ می‌باشد. بیش از ۱۲ نظر در نمودار ناحیه‌ای برخی معاین‌های مقایسه در این تحقیقات است. انتخاب روش مناسب با توجه به هدف، دقت و زمان محسوب می‌تواند منتفی باشد. به طور مثال اگر هدف...
شکل 11- نمودار نتایج ارزیابی روشنگری مبانی‌برای پارندگی روز 22 اسفند 1369 در 3 تراکم مختلف الفبای MAE و MBE (ب)
واحدهای همگن باعث بهبود نسبی همبستگی مکانی شده است.

۵- افتراش ترکمی استدلالها در نتایج تحلیل واریوگرافی بارندگی روژ ۱۳۸۹ میلادی ناشده و باعث بهبود است. اینکه داده‌ها در کل منطقه نشاندهند این امر می‌تواند به خاطر تغییرات مکانی زیادی در بارندگی و استی نبودن داده‌ها باشد.

۶- نتایج تحلیل واریوگرافی در هر یک از واحدهای A و C با روز ۱۴ اسفند ۱۳۸۹ (برای روز ۱۴ اسفند) نشان داد که فقط همبستگی مکانی در واحد A دیده شد، بنابراین این تقسیم منطقه به

واژه‌نامه

مراجع

۱. مدینی ح، میانی زمین آماب، انتشارات دانشگاه صنعتی امیر کبیر، ۱۳۷۳.

۸. Hargrove, W.W., “Interpolation of Rainfall in Switzerland Using a Regularized Splines with
Relationship With the North Atlantic Oscillation,”
Classification Using Histogram Analysis: An
Example of Data Mining in Meteorology,”
2002.
20. Stockburger, D. W., “Multivariate Statistics:
Concepts, Models and Applications,” Southwest
Missouri State University, 1998.
14. Watson, G.S., “Smoothing and Interpolation by
Kriging and with Splines,” *Mathematical Geology.*
of Model Performance,” *Bulletin American
in Data,* John Wiely and Sons Pub, pp.368, 1990.
17. Alhamed, A., Lakshmivarahan, S. and Stensrud, D.
J., “Cluster Analysis of Multimodel Ensemble from
18. Uvo, C.B., “Analysis and Regionalization of
Northern European Winter Precipitation Based on its