معرفي الگوریتم جدید برای محاسبه پاشنگی در موچر نوری

سعید فیضٌ و سعید همئی

دانشگاه مهندسی برق و کامپیوتر، دانشگاه صنعتی اصفهان
(دریافت مقاله: 27/12/1377، پذیرش نهایی: 1/11/1378)

چکیده - یکی از عوامل محدودکننده ظرفیت کانالهای مخابراتی نیم‌نوری مکانیزم پاشنگی نوری است. بررسی دقیق پاشنگی ماده اغلب بر اساس پیشینه سیستم ROHR رد شده است. یکی از اهمیت بسیاری روش‌های بررسی پاشنگی ماده توسط مارکوس به وجود یکی از پیشگامان بررسی موج‌های فیبری است. این پاسخگویی می‌باشد که چگونه تغییرات فیبری در ماده و مانند این موارد از پاشنگی ماده را دقت بیشتری تا بیشتری به‌وجود برات. در روی خوشه پاشنگی یک سیستمی است که به خوبی همراه با روش‌های مکانیزه شده دارای تغییرات فیبری در ماده است. در این مقاله ضمن اشاره مختصر به روش‌های شده توسط مارکوس الگوریتم جدیدی پاشنگی ماده می‌پردازد که برای این می‌توان میزان پاشنگی فیبر را با دقت بیشتری تعیین کرد. در روی خوشه پاشنگی یک سیستمی است که به خوبی روش‌های مکانیزه شده دارای تغییرات فیبری در ماده است.

Dispersion Evaluation In Optical Wave Guides

S. Feiz and S. Hemati

Department of Electrical Engineering, Isfahan University of Technology

ABSTRACT- One of the factors which limits the transmission capacity of the fiber optics communication channel is the material dispersion. Exact analytical study of the material dispersion is often complex and involves calculating the derivatives of the refractive index of the core. These calculations are also cumbersome to do, especially for high-order derivatives. So material dispersion has only been studied analytically in certain circumstances and with many simplifying assumptions. One of the best of such studies was done by Marcuse [10-12]. In this article, a new algorithm is presented which can be used to determine material dispersion more precisely. In this new approach, there is no need for simplifying assumptions and unlike the method in [10-13], it can be used for all kinds of optical sources.

1- مقدمه

حداکثر توان قابل انتقال در فیبرهای نوری توسط پیده‌های غیر خطی محدود می‌شود و این امر یک محدودیت جدی در سیستم‌های فیبری نوری می‌باشد. خواصیکی که طول خط در آنها زیاد است، به حساب می‌آید.

* استادیار
** کارشناسی ارشد

استقلال، سال 1378 شماره 18، شهریور
سیگنال‌های خطی در حد کمتر از نانومتر، بر طول موج پاشاندگی صفر سیستم نوری منطبق با شکست [1] و از آنجایی که کشتی‌های پاشاندگی ماده دارای اهمیت زیادی برای سیستم‌های فیبر خروص شکستگی ضروری خواهند بود. در طی سال‌های اخیر روش‌‌های متعددی که مبتنی بر آزمایش‌های ارائه شده است [5-7] و روش‌های متعددی هم وجود دارند که پاشاندگی ماده را به صورت تحلیلی ابتدا می‌کنند [8-13].

برای تیزی پاشاندگی به صورت تحلیلی، ابتدا مشتق‌‌های ضریب‌گره شکست هسته‌ی ضریب نوری را نسبت به طول موج تغییر می‌کیند. تغییرات ضریب‌گره شکست هسته‌ی پیشرفت SI نسبت به طول موج اغلب با معادله‌ای ساده با شکست شکسته می‌شود [9]. این معادله با استفاده از شکست ضریب‌گره شکست شکسته می‌شود با طول موج نور در خلاء و را به شکل زیر بیان می‌کند:

\[
\frac{n^2 - 1}{\alpha} = \sum_k \frac{G_k \alpha^k}{\alpha^k - \lambda_k^k}
\]

که در آن، \(n\) سیال‌گر ضریب‌گره شکست ماده شفاف، \(\alpha\) طول موج نور در خلاء و \(G_k\) هم اعداد ثابتی است که به نوع ماده شفاف بستگی دارد.

یکی از اهداف اصلی در مطالعات تحلیلی پاشاندگی، یافتن طول موجی است که در آن حداقل پاشاندگی در فیبر ایجاد می‌شود. برای تیزی دقیق این طول موج محاسبه مشتق‌های مرتب نیاز دارد. لازم است به این نکته توجه شود که حاصل جمع \(S_k\) برای سمت راست معادله \(2\) است. حال اگر اولین و دومین مشتق \(s_k\) نسبت به \(\alpha\) محاسبه شود آنگاه خواصی داشت:

\[
S_k' = S_k' + S_k'' = -A_k B_k (\lambda - B_k)^{-1} + A_k B_k (\lambda + B_k)^{-1}
\]

(7)

\[
S_k'' = S_k'' = (-1)^{m} A_k B_k (\lambda - B_k)^{-1} + (-1)^{m+1} m! A_k B_k (\lambda + B_k)^{-1}
\]

(8)

به عنوان نمونه می‌توان نشان داد که:

\[
S_k^{(2)} = S_k^{(1)} + S_k^{(2)} = (-1)^m m! A_k B_k (\lambda - B_k)^{-1} + (-1)^{m+1} m! A_k B_k (\lambda + B_k)^{-1}
\]

(9)

و به عبارت دیگر:

\[
S_k^{(m)} = S_k^{(1)} + S_k^{(2)} + \ldots + S_k^{(m)} = (-1)^m m! A_k B_k (\lambda - B_k)^{-1} + (-1)^{m+1} m! A_k B_k (\lambda + B_k)^{-1}
\]

(10)

با استفاده از ریاضیاتی می‌توان نشان داد که:

\[
S_k^{(m)} = S_k^{(1)} + S_k^{(2)} + \ldots + S_k^{(m)} = (-1)^m m! A_k B_k (\lambda - B_k)^{-1} + (-1)^{m+1} m! A_k B_k (\lambda + B_k)^{-1}
\]

(11)

\[
S_k^{(m+1)} = S_k^{(1)} + S_k^{(2)} + \ldots + S_k^{(m+1)} = (-1)^m m! A_k B_k (\lambda - B_k)^{-1} + (-1)^{m+1} m! A_k B_k (\lambda + B_k)^{-1}
\]

(12)

\[
S_k^{(m)} = S_k^{(1)} + S_k^{(2)} + \ldots + S_k^{(m)} = (-1)^m m! A_k B_k (\lambda - B_k)^{-1} + (-1)^{m+1} m! A_k B_k (\lambda + B_k)^{-1}
\]

(13)

\[
S_k^{(m+1)} = S_k^{(1)} + S_k^{(2)} + \ldots + S_k^{(m+1)} = (-1)^m m! A_k B_k (\lambda - B_k)^{-1} + (-1)^{m+1} m! A_k B_k (\lambda + B_k)^{-1}
\]

(14)
محاسبه شدت، ما معادله بالا را برای محاسبه مستقیم شکست سیلیکایی خالص به کار برده، معادله سلیمی سیلیکایی خالص با دقت زیاد توسط میلستون اندازه‌گیری شده است [14]. شکل‌های (1) و (2) نتایج حاصل از کارگرایی معادله (12) را نشان می‌دهد. بیانیه از مولفه طول موج پاشندگی صفر برای سیلیکایی خالص را بین طول موج 370/1 تا 1/28 میکرومتر اعلام کرده‌اند. در مراجع [8] این مقدار برای 1/27 میکرومتر گذشته است و در مراجع [11] گذشته است که این مقدار برای پاسخگویی 2/73 میکرومتر است. با روش ارائه شده در این مقاله طول موج پاشندگی صفر سیلیکایی خالص برای 1/26 میکرومتر به دست می‌آید. برای مشاهده مرتبات بالاتر در طول موج 1-28 میکرومتر مقدار زیر در مرجع [9] داده شده است:

دistributivity

در روش پیشنهادی ما در این طول موج مستقیمی در مقدم سوم و چهارم برابری با

این مثالی از شکست می‌هند که مقداری که پیش از این گزارش شده‌اند تفاوتی با نتایج حاصل از روش پیشنهادی ندارند. با این وجود لازم است توجه شود که این مراحل محاسبات در گذشته با استفاده از روش‌های عدیدی نسبتاً دچار بهبود آمادگری که مشاهده مرتبات بالای طول مدت نظریه کاملاً علاوه بر این برای اینگونه روشنایی عدید معمولاً نیازی ندارد روش‌ها مشکل‌ساز می‌شود.

برای محاسبه معادله کلی مقدار ضربین شکست نسبت به شکست زاویه‌کانف داشته و عناصر کلین برای همزمان خواهیم داشت.

برای محاسبه معادله کلی مستقیم ضربین شکست نسبت به شکست زاویه‌کانف داشته و عناصر کلین برای همزمان خواهیم داشت.

در این مقاله می‌خواهیم این مشاهدات را برای هنگامی که شکست نسبت به طول موج برابر با

می‌خواهیم این مشاهدات را برای هنگامی که شکست نسبت به طول موج برابر با

برای این سمت، شکست نسبت به طول موج برابر با

بدریه که اگر m براکت باشد، نیاز به جمع اول

استقلال، سال 18، شماره 1، شهریور 1378
برای مثال که برای $m = 1$ عبارت جمع دوم را نباید محاسبه کرد [17].

3. الگوریتم محاسباتی جدید برای تعیین یا شنتگی

یکی از بهترین روشهای محاسبه یا شنتگی ساده توسط د. مارکوس در سال ۱۹۸۵ در یک سری مقاله ارائه شد [17-12 و 16]. در این مقالات، مارکوس سومین مشتق ضرب شکست نسبت به فرکانس زاویه‌ای را در محاسبه یا شنتگی به کار گرفته بود. اما با وجود در نظر گرفتن فرض‌های ساده‌کننده، پیچیدگی روابط به حذی بود که خود مسئله نسبت به نتایج به دست آمده اظهار حال اگر تعریف کنیم $n^{(i)} = n$ و $n^{(m)} = \frac{d^{m-1}n}{d\omega^{m-1}}$ طرفین معادله بالا خواهیم داشت

$$\sum_{i=1}^{m} C_m n^{(i)} n^{(m-i)} = \sum_{k} \frac{G_k \omega_c}{\lambda_k} m! \left(\frac{\omega_c}{\lambda_k} - \omega \right)^{m-1} \left(-\frac{\omega_c}{\lambda_k} - \omega \right)^{m-1}$$

و با این باز

$$n^{(m)} = \frac{1}{\tau_m} \left[\sum_{i=1}^{m-1} C_m n^{(i)} n^{(m-i)} \right]$$

استقلال، سال ۱۳۷۸، شماره ۱، شهریور
در تحلیل پاشندگی مراتب بالا [16]، بررسی مشتق‌های نور مدوله شده به دست آورده بوده و در نهایت نتایج در نظر گرفته شده است که با توجه به اینکه هدف اصلی محاسبه انتگرال بالا، محاسبه اندازه پیشینی‌های حاوی اندام‌ها در فرمول (19) است. پس:

\[|\psi(t, 1)| = \left| \int_{-\infty}^{+\infty} \Phi(\omega) e^{i\omega(t - \beta', \omega - \alpha)} e^{-i(\beta - \beta', \omega - \alpha)\tau} d\omega \right| \tag{21} \]

اگر فرض کنیم \(\tau = t - \beta' \omega \), می‌توانیم:

\[|\psi(t, 1)| = \left| \int_{-\infty}^{+\infty} \Phi(\omega) e^{i\omega t} e^{-i(\beta - \beta', \omega - \alpha)\tau} d\omega \right| \tag{22} \]

و به دنبال دادن گام دومن‌های نور منجر به معادله‌ای به دست می‌آید، محاسبه کرد:

\[\langle P(z, t) \rangle = \left| \psi(t, 1) \right|^2 \tag{19} \]

و برای این مقاله روشنی را پیشنهاد می‌کنم که بررسی دو می‌تواند:

\[\beta = \beta + \beta', (\omega - \omega_0) + \frac{1}{\tau} \beta', (\omega - \omega_0)^2 + \frac{1}{\tau^2} \beta', (\omega - \omega_0)^3 \tag{18} \]
بررسی پاسخ‌گذاری حاصل از منابع نورگوستی
پیش از آنکه نور مدوله شود، منبع نور سیگنالی را می‌فرستد که دامنه‌ای با تابع \(\psi(t) \) وان می‌شود و توانش بر اساس با

\[P_c(t) = |\psi(t)|^2 \] (30)

اگر فرض کنیم، طیف منبع نور به فرم گوستی باشد، آنگاه

\[\psi(t) = A \exp\left(-\frac{W\cdot t}{2} \right) \exp[i\omega_t] \] (31)

که در آن \(W \) پهنای طرفی نور است. منبع نور در سیستم‌های فیبر نوری اغلب توسط توانش مدوله می‌شود. توان سیگنال نوری را می‌توان به شکل زیر نوشت

\[P(t) = S(t) \cdot P_c(t) \] (32)

که در آن \(S(t) \) سیگنال پیام است و فرض می‌شود به فرم گوستی

\[S(t) = S \exp\left(-\frac{t}{T} \right) \] (33)

است. سیگنال نور مدوله شده همان \(\psi(t) \) است. و توان آن با مقدار دهیت می‌شود

\[P(t) = |\psi(t)|^2 \] (34)

در واقع می‌توان \(\psi(t) \) را به شکل زیر نوشت

\[\psi(t) = S^{1/2}(t) \cdot \psi(t) \] (35)

\[\psi(t) = S^{1/2} A e^{-t/T} e^{i\omega t} \] (36)

\[\psi(t) = S^{1/2} A e^{-t/T} (1 + T\cdot W)/(T^2) e^{i\omega t} \] (37)

که با استفاده از بسط سری تیلور می‌توان نوشت:

\[\psi(z, t) = \left| \int_{-\infty}^{+\infty} \Phi(\omega) e^{i\omega t} \sum_{k=0}^{\infty} \alpha_k (\omega - \omega_c)^k d\omega \right| \] (38)

که در آن \(\alpha_k \) عدد مختلط است و \(\alpha_k \) در پوست محسوب می‌شود.

\[\psi(z, t) = \sum_{k=0}^{\infty} \alpha_k \Phi(\omega) e^{i\omega t} (\omega - \omega_c)^k d\omega \] (39)

\[\psi(z, t) = \sum_{k=0}^{\infty} \alpha_k \Phi(\omega + \omega_c) \omega^k e^{i\omega t} d\omega \] (40)

\[\psi(z, t) = \sum_{k=0}^{\infty} \alpha_k F^{-1} (\omega^k \Phi(\omega + \omega_c)) \] (41)

\[\psi(z, t) = \sum_{k=0}^{\infty} \alpha_k (-i)^k D_k^k \left(e^{-i\omega_c t} \psi(x) \right) \] (42)

که در آن \(D_k^k \) دمای مشتق مربوط به \(k \)ام نسبت به \(x \) است.

\[\psi(z, t) = \sum_{k=0}^{\infty} b_k D_k^k \left(e^{-i\omega_c t} \psi(x) \right) \] (43)

\[b_k = (-i)^k \alpha_k \] (44)

همانطوری که دیده می‌شود |\(\psi(x, t) \) با انتقال یک ترکیب خطی از مشتق‌ها و مشتق‌گیری برای بسته است و باید از این نسبت به تابع \(\psi(t) \) یا دیسکرتینش خودشان بگوید. برای تولید شناخته شده‌ای همچون نتایج غیرمختار که به آسانی امکان‌پذیر است و می‌توان به‌واضح باید آن یک فرمول کلی به‌دست آورد. برای سایر تولیدات یا در روش‌های دیگر استفاده کرد.

\[\text{نکته جالب توجه در محدوده} (88) \text{یعنی است که اگر محدوده} \] غیرمختار باشد خروجی صرفاً تأخیر بیان‌دهنده و رونگی است و میزان تأخیر برابر با \(Z \beta \) خواهد بود که این میزان، همان مدت زمان لازم برای طی مسافتی به طول \(Z \) است.

استقلال، سال 18، شماره 1، شهریور 1378
منطقی باشد میزان انحراف شکل بالس از حالت گوستی، چشمگیر است. و در سایر طول موج‌ها پهن شنجک بالس به خوبی محسوس است.

6 - نتیجه‌گیری
در این مقاله الگوریتم جدیدی ارائه شده که به‌میزان آن می‌توان پاشاندگی را در فیبر نپ همراه کرده و این الگوریتم باشندگی‌زایی بالس با میزان بالعکس داده داده شده است.
نتایج به دست آمده با تاثیر آنالای شده توسط مارکوس هم‌زمانی دارند که این آزمایشات که محققان ساده‌کننده که مارکوس درنظر گرفته است دارند در سایر محاسبات داده‌های داده شده است. علاوه بر آنکه و B و V محاسبه بر یک مارکوس سه‌تایی (۱۸) و D هستند که به طور دقیق داده‌هایی هستند. مطالبی در همان (۱۸) ماهنده از شکل‌های رسم شده توسط مارکوس را نشان می‌دهد.

الگوریتم پیشنهادی در این مقاله را می‌توان برای حالتی که طیف منبع نور به فرم گوستی نباید هم کار کرد. با توجه به بروز و روش مارکوس محدود به منابع خاصی نمی‌شود. عاملی که صحت تطابق در این الگوریتم را محدود می‌کند خاطی ناشی از جایگزینی کردن با سطح سری یک‌پایه است. لازم به ذکر است که در واقع عبارت (۱۸) مقدار تابعی است زیرا اولاً مشتق دوم β نسبت به فرمول‌اش زاویه‌ای صفر است و ثانیاً مشتقات به سطح سری یک‌پایه β نسبت به فرمول‌اش زاویه‌ای افزایشی که تاکنون در اغلب محاسبات باشندگی از آنها صرف نظر شده است. با این وجود، اگر پهنای طیف منبع نور کوچک باشد و یا اگر طول کانال (2) چندان بزرگ نباشد ماده‌ای با دقت بالایی برخورد اخواند بود.

کد در آن $B_k = A_k B_k$ تعیین شده است.

با توجه به معادله بالا برای $\psi(z,t)$ (۱۸) می‌توان دریافت که یک جنبه‌های بررسی در یک پالس باکی ضرب شده که حاصل می‌تواند تاثیر منوطی به همراه دانته باشد، از جمله به یک کردن بالس گوستی و تغییر دادن شکل بالس است.

5 - مثال کاربردی از یک کاهشگر الگوریتم پیشنهادی
نتایج حاصل از به کارگیری الگوریتم پیشنهادی برای تحلیل باشندگی در فیبر نپ هسته‌ای آن فیبر نپ هسته‌ای به‌کمک Fused Silica باشد برای نمونه که می‌تواند که متابولی دانه‌ای نشود و در حقیقت که طول موج نوری بر طول موج پاشاندگی صفر باشد. قدردانی

شهروز ۱۳۷۸

استقلال، مرداد ۱۸ شماره ۱

18. نوری با ضرب شکست پنجم، گری، طرح پژوهشی مرکز مهندسی پرتو دانشگاه صنعتی اصفهان، 1375.
پوست

\[\alpha_k = \text{محاسبه} \]

اگر \(u \) را بیابید معادله زیر تعریف کنیم

\[u = -j (\beta \cdot \beta^\ast (\omega - \omega_i) z \]

ضرایب بسط مسیر تیپور \(e^{u} \) حول نقطه \(\omega \) برای خواهان بود با

\[\alpha_k = \frac{D^a_k [e^u]}{k!} \bigg|_{\omega = \omega_i} \]

که نماد \(k \) مشتق \(k \)ام \(D^a_k \) مشتق \(k \)ام نسبت به \(\omega \) و نماد \(m \) مشتق مرتبه \(m \) مشتق مرتبه \((u^{(i)}_k)^{m_k} \)

با استقرار ریاضی می‌توان نشان داد که

\[D^a_k [e^u] = \sum_k C(m_1, i_1, ..., m_k, i_k) \left(u^{(i_1)}_1 \right)^{m_1} \left(u^{(i_2)}_2 \right)^{m_2} ... \left(u^{(i_k)}_k \right)^{m_k} e^u \]

\[\Sigma m_j j = k, \quad m_j \neq 0 \]

بنابراین:

\[\alpha_k = \sum_k \frac{1}{\pi (i_j \cdot (m_j) j)} \left(u^{(i_1)}_1 \right)^{m_1} \left(u^{(i_2)}_2 \right)^{m_2} ... \left(u^{(i_k)}_k \right)^{m_k} e^u \]

که در آن

\[C(m_1, i_1, ..., m_k, i_k) = \frac{k!}{\pi \left(\sum_{m_j \neq 0} (i_j \cdot (m_j) j) \right) } \]

برای نمونه اگر چندین بار از تابع \(e^{u} \) نسبت به \(\omega \) مشتق بگیریم خواهای داشت

\[1378 \]

استقلال، سال 1388، شماره 1، شهریور