مطالعه تجربی رفتار آیرودینامیکی در راکت بالک ناوش

محمد رضا سلطانی، حمید فاضلی، یزن فرمانه و علیرضا داوودی
دانشکده مهندسی هوای فضا، دانشگاه صنعتی شریف
دانشکده مهندسی مکانیک، دانشگاه صنعتی شریف

چکیده - به منظور مطالعه رفتار آیرودینامیکی راکتهای بالک خمیده، برای نخستین بار در کشور، یک برنامه جامع شامل آزمونهای متعدد تدارک دیده شده است. در مرحله اولیه مدل استاندارد در تونل یاد ماتیارو ساخت این ابزار محقق (ع) که در دارای سطح مقطع کاری به ابعاد

600×600 سانتی‌متر مربع است در اعداد ماخ $2.2 \leq M_{\infty} \leq 0.4$ و زاویه حمله $10^\circ \leq \alpha < 4^\circ$ - مورد آزمایش قرارگرفته است. نتایج این آزمایشات که شامل تغییر ضرایب طولی راکت است، با نتایج به دست آمده از یک برنامه رایانه‌ای شبیه به NASA مقایسه شده است. این مقایسه نشان می‌دهد که آزمایشات انجام شده از دقت نسبتاً خوبی برخوردار است. پس از حصول اطلاعاتی از WAF، مدل یک راکت بالک خمیده در این تونل مورد آزمایش قرار گرفته است. تحلیل نتایج به دست آمده در زواياي حمله و

واژگان کلیدی: تونل باد، موتور بالک خمیده، بالاس، WAF, TTCP

An Experimental Study of the Aerodynamic Behavior of Two Wrap Around Fin Missiles

M. R. Soltani, H. Fazeli, B. Farahanieh and A. R. Davari
Department of Aerospace and Department of Mechanical Engineering, Sharif University of Technology

Abstract: An extensive experimental investigation to understand the aerodynamic behavior of wrap around fin(WAF) missile configuration has been conducted. Various tests using at first a standard model (TTCP) in the trisonic wind tunnel of Imam Hossein University has been performed. The tunnel has a test section of 60x60 cm and can operate at Mach numbers of $0.4 \leq M_{\infty} \leq 2.2$ and at attack angles of $-4^\circ \leq \alpha \leq 10^\circ$. Experimental longitudinal results are compared with those of NASA and an engineering code. The results for TTCP model are in good agreement. After gaining confidence on the TTCP results, a new model of WAF rocket was designed, built and tested. This paper compares the results of two models tested under the same conditions.

Keywords: Wind tunnel, Warp around fin, Missile, Balance WAF-TTCP

141

استقلال، سال 1381، شهریور 1381
یک‌مقدمه
اصطلاح بالک خمیده‌ای معمولاً به سطح‌های خمیده‌ای اطلاق می‌شود که به‌عنوان سطح پدیدار کننده و یا سطح تکنل کننده استفاده می‌شود و دارای شرایط انحنایی برابر با بدن موشک بوده و نمی‌توان با همان فرم بدن موشک پیچیده‌ای مشابه می‌شود. به دلیل کم‌بندی کم حجم و حمل و نقل آسانی، این بالک‌ها به‌طور گسترده‌ای در موشک‌هایی که در داخل لوله پرتاب موشک استفاده می‌شود، استفاده می‌شود. این نوع بالک‌ها طراحی شده برای استفاده به‌کار رساندن موشک‌هایی که نیاز به برقراری فرایند تعیین‌ارزی دارد. به‌دست آمده است که این بالک‌ها بهترین کارایی و اپتیکی دارند.

به‌منظور بیان و بررسی بالک‌های خمیده، می‌توان به مسائل مختلفی اشاره کرد که در جهت بهبود بالک‌های خمیده نقش دارند. این مسائل شامل نیروی پیچش، ضربین‌بندی، نیروی محوری، فشار‌سنجی و شیب بالک‌ها می‌باشد. در این بخش، به‌منظور بهبود بالک‌های خمیده و به‌طور کلی بررسی بالک‌های خمیده، می‌توان به بررسی بالک‌های خمیده پرداخت.
که از نوع مکانه است نشان داده شده است. اجرای تشكیل
دهندگان تولید باعث تولید. 1- ورودی: جهت هدایت هوا محیط به داخل تولید باد.
2- لایه زیرهای: برای ایجاد اعتماد به ابتکارات ورودی و
ایجاد جریان موزاری و یکتکایت. 3- محفظه آرامش: به منظور تخفیف اغتشاشات جریان هوا در
مقطع آزمایش.
4- شیرهوره همگرا – واکرا: برای ایجاد جریان با عده‌های مال
مورد نظر در داخل مقطع آزمایش. این شیرهوره از در
صفحه فولای انتقال یافته تا تشكیل شده است و به روش جکهای که در حال حاضر از نوع دستی تنظیم می‌شوند،
بسته می‌شود. در محدوده 0.9 ≤ M ≤ 0.45
تای به تغییر دیواره‌های شیرهوره
نیست و عده مال مورد نیاز با استفاده از تغییر دور موتور
حاصل می‌شود.
5- مقطع آزمایش: مقطع آزمون این تولید دارای ابعاد
600 × 1000 × 1000 سانتیمتر است. دیوارهای بالا و پایین این
مقطع برای حذف اثرات لایه م pomi و گالوگیری از انکاس
موج ضررهای متخلف ساخته شده است. نسبت سطح
تخلف به سطح کل، مناسب را به دنبال، قابل تغییر
است. در دو دیواره جانبی مقطع آزمایش، درجه‌های
متحرک و شفاف برای نصب مدل در داخل تولید و
مشاهده مدل و یا جریان روی مدل با استفاده از تجهیزات
اشکار سازی جریان، تعبیه شده است. در داخل مقطع
آزمایش، سیستم تغییرات زاویه حمله که توسط رایانه قابل
کنترل است، قادر است مدل را در حال حاضر در زاویای
حمله 6° ≤ θ ≤ 0° جریان دهد.
6- دیفیوزر اول: برای کاهش سرعت جریان و بهبود کارایی
7- لوله دوم: برای ایجاد امگاه مکش در مقطع آزمایش در
حالات گر و محسن بهبود کارایی دیفیوزر.
8- انتکورور: برای تأمین هواي مورد نياز موتور در سرعت‌های
موفقیت.
قدار به پیش یاب عناوین غیر عادی بالکهای خمیسه نسبت
و عتابه بر این بود که نمی‌توان ابزار قابل اعتماد در طراحی بالکهای
خمیسه در ریزهای مورد نظر آزمون‌های تولید باد است. بر این
اساس یک برنامه تحقیقاتی بین المللی موسم به برنامه
با شرکت کمپانی همکاری کرده است (TCPC). با استفاده
کانادا و استرالیا در سال 1989 آغاز شد. این برنامه جامع شرکت
آزمون یک موسسه استانداردی بالکهای خمیسه مختلف در
تولیدی باد متعدد و در اعداد مانند، ریسوندز و زوايا موتور
گوناگون است که بعضی از نتایج آن در مرجع [10] آورده شده
است. واقعیت این است که در دهه ۷۰ و تنها یک دهه هسته
میلادی، روش‌های عددی مورد استفاده برای تجزیه و تحلیل
بالکهای خمیسه، منحصر به استفاده از روش‌های پیانویسی بود و
این روشهای قدیم به پیشگیری‌های غیر عادی بالکهای
خمیسه نیوده. لذا هدف آن است توسط سکنتر [1] با استفاده
از روشهای پیانویسی و مدل کردن دنباله بر مبنای نتایج تجربی
نیروی در محدوده مادون صوت نتایج موثری را در مقایسه با نتایج
تجربی نشان داد. برای تمریگ در مسیرهای اخیر با استفاده از
پیش‌دبایی که در دنیای سیالات محاسباتی (CFD)
شده است و استفاده از راهنماهای سریع، پیش‌دبایی از رفتارهای
غیر عادی بالکهای خمیسه مورد تجزیه و تحلیل قرار گرفته
است [14-16]، اینه تأثیری در تمریگ مادون و روشهای عددی مورد
استفاده برای تایید از روش‌های مشاهده شده در روشهای تجربی و
آزمون‌های تولید مورد استفاده قرار گرفته است. به عنوان
مثال تغییر جهت گشتاور جریان و جابجایی در محدوده اعداد
ماخ 4.7 ≤ M ≤ 4.5 ممکن است با همچنین، روشهای تجربی و آزمون‌های تولید باد در کشف و آشکار سازی پدیده‌های غیر عادی در بالکهای خمیسه
پیش‌دبایی و همچنین.
2- تولید باد
(1) T0 تولید باعث منظوره دانشگاه امام حسین (ع)
استقلال سال 21 شماره 1 شهریور 1381
الف - شماتیک تونل باد

ب - مدل استاندارد تونل در مقیاس کاری

شکل 1- تونل باد سه منظوره دانشگاه امام حسین (ع)

3- تجهیزات

تجهیزات تونل در موقعیت آزمایش عبارت بود:
- تعدادی بالاتس سه مولفه پرای اندازه گیری نیروهای برأ
- پس جانی و گشتاورهای پیچشی و جانی
- مانومتر جیوهای جند شاخهای پرای اندازه گیری توزیع

- دیفیوزر دوی: برای کاهش صوت و ایجاد فاصله مناسب برای مخلوط شدن هواوی ورودی از انزکتور و دیفیوزر اول.

- موتور جت: از نوع موتور هواپیما.

- هادی گاز خروجی: به منظور انتقال گازهای خروجی به محیط.

9- دیفیوزر دوی: برای کاهش سرعت و ایجاد فاصله مناسب برای مخلوط شدن هواوی ورودی از انزکتور و دیفیوزر اول.

3- سیستم سنجش نیرو

تعدادی بالاتسی شش مولفه استانداردی و دینامیکی برای اندامی گیری کلیه نیروها و گشتاورها لازم به ذکر است که بالاتسی دینامیکی دارای قابلیت اندازه گیری نیروها و گشتاورها در فرکانسی مختلف است. با استفاده از این بالاتسی می‌توان ضرایب دینامیکی که جسم ضرده در بسیاری از شرایط پرورا به آنها مواجه می‌شود با دقت بسیار خوبی اندازه گیری کرد.
2- زمان آزمایش به میزان قابل ملاحظه‌ای کاهش می‌یابد. این عمل با استفاده از بردهای اخیر اطلاعاتی که هم‌زمان قانع به اخیر و ثبت اطلاعات حالت‌ها از کلیه‌ترانسپورتی‌ها به‌دست آمده‌کان‌کن‌بر است.

3- توزیع فشار روزی مدل در مواضعی که جریان تایپا به‌نام تبیین شرایط زاویه حمله را می‌توان در محدوده $90^\circ - 0^\circ$ به‌راحتی تغییر داده و تعریف و کوتاه‌تر کردن رادیو گیر نیاز دارد. برای آزمون مدل‌های ورژن‌گر، محدوده تغییرات زاویه حمله از -8° به 24° (با $\alpha = 0^\circ$ تغییر مقدار را در $\alpha = 12^\circ$ تغییر بفته است. همچنین تجهیزات موجود قادرون مدال را در زوايا جاتی مختلف در داخل مقطع کاری مورد آزمایش قرار داده.

4- مدل‌های مورد آزمایش

دو مدل موشک مورد آزمایش قرار گرفته است که اختلاف آنها در ضریب لاغری و همچنین ابعاد بالکه‌سیست. در شکل (2) می‌توانید این مدل‌ها نشان داده شده است. مدل اول TTCP، صرفه‌نجایی در نقطه نهایی تولید مدل طراحی، ساخت و آزمون شده است. نهایاً فرق مدل ساخته شده از ایران در مدل استاندارد دارای نویس هنگام آنها است مدل TTCP استاندارد. مدل ساخته شده درای داده اجای نوع مناسب است. ویا نمونه استاندارد دارای داده اجای نوع سکات است. این موضوع باعث تفاوت‌های در نرخ و ماندهای حاصله در مقایسه با نتایج موجود خواهد شد. در شکل‌های (2-ج) و (2-د) این نوع دماغ‌ها به هم مقایسه شدند. همان‌طور که در مقایسه درصد نرخ تایپا آزمون به مدل در تولیدی بیشتر در مرکز تحقیقات نانو و دیگر کشورهای دنیا انجام شده است در همراه تحلیل‌های دسترس است. بنابراین با آزمون این مدل در تولید نشده دانشگاه امام حسین (ع) و مقایسه با نتایج موجود می‌توان تا حدودی از کیفیت جریان در داخل تولید اطلاعات اولیه ی به‌دست آورده تا نتایج حاصل از آزمون این مدل و مقایسه آنها با اطلاعات موجود در مرجع [15] آورده شده است. در این مقاله مدل ساخت ایران به‌نام مدل نام‌آمده شده و در بقیه فقط مدل اول نامی‌به می‌شنود. در شکل (1-الف) نشان داده شده است.

مدل دریگر در شکل (1) مدل یک راکت بالک خمیده است که برای بیش‌ینیم رفتار در هنگام مختلف پروازی نیاز به سیستم زاویه حمله مدل 2-4 تغییرات کلی در سیستم زاویه حمله مدل

با اعمال تغییرات قابل تغییر زاویه حمله در داخل تولید به صورت جشنه‌گری افزایش داده شده است. به‌صورتی که با استفاده از یک بالانس دیواری برای مدل‌های کوچک زاویه حمله آنها در محدوده $90^\circ - 0^\circ$ به‌راحتی تغییر داده و تعریف و کوتاه‌تر سپاسی گیرندهٔ کرد. برای آزمون مدل‌های ورژن‌گر، محدوده تغییرات زاویه حمله -8° به 24° (با $\alpha = 0^\circ$ تغییر بفته است. همچنین تجهیزات موجود قادرون مدال را در زوايا جاتی مختلف در داخل مقطع کاری مورد آزمایش قرار داده.

4- سیستم دینامیکی

با استفاده از این سیستم می‌توان زاویه حمله مدل را در داخل تولید به صورت دینامیک با فرکانس‌های مختلف تغییر داد و سیستم دینامیکی حاصله را با استفاده از بالانس دینامیکی انداده‌گری کرد.

5- 4 تن‌دانسیر فشار

برای انداده‌گری فشار روزی مدل، قبل از مانور جیوهای اسنایدکه که هم از دقت مناسبی برخوردار نبود و هم اینکه مدت زمان آزمایش طولانی می‌شد. از دیگر معضولات مانور‌های جیوهای این است که با استفاده از آنها می‌توان توزیع فشار روزی مدل در حانهای تایپا و دینامیکی را انداده‌گری کرد و جونا ابعاد مدل‌هایی که در تولیدی با داده شامل صوت مورد آزمایش قرار می‌گیرند به دلیل کوچک بودن مقطع کاری تولید، نسبتاً کوچک‌اند. در صورتی که نیاز به انداده‌گری توزیع فشار روزی مدل با استفاده از مانور‌های بالا بود، با استفاده از ترانسپورت‌های فشار که ابعاد آنها بسیار کوچک است می‌توان تعداد زیادی از آنها را در مدل قرار داد که در نتیجه:

1- بر دقت انداده‌گری افزوده می‌شود.

استقلال، سال 31، شماره 1، شهریور 1381

145
آزمون آن در تونل باعث است. اگر چه با استفاده از آن‌های نسخه

برنامه‌ریزی‌های موجود در صورت برنامه‌ریزی از طریق یک
پیش‌بینی است. ولی برنامه مربوط به پیش بینی زیر

مدل به بالا را است. در این مقاله مدل

این راکت بالک خمیده، مدل دوم نامیده می‌شود.

c) دماغه اجام نوع ساتز

شکل 2 مدل‌های مورد آزمایش در تونل و دانشگاه امام حسین (ع) (اندازه‌ها بر حسب قطر بیشتر شده است).

هاریامش همان طوری که ذکر شد ایجاد بانک اطلاعاتی برای

بهینه سازی و بهبود برنامه‌ریزی است. در ادامه این مقاله مدل

این راکت بالک خمیده، مدل دوم نامیده می‌شود.

5- نتایج آزمایش

کلیه آزمایشات در تونل و دانشگاه امام

حسین (ع) انجام گرفته است. نتایج خروجی از بالاس توسط

برد اخبار اطلاعات (A/D Board). 16 کانال ثبت و ضبط شده

است. هر نقطه شانه داده روزی منحنی میانگین 100

تنومنه است.

قبل از اینکه از یک تونل پدیدار کیفیت دار

استفاده شود لازم است کیفیت جریان در مقطع آزمون مورد

بررسی قرار گیرد. چون تونل پدیده دانشگاه امام حسین (ع) با

در خارج از کشور نصب و در حال استفاده بوده است و پرس

باید، به علت اینکه در ایران نصب ورودی اندیس شد، هیچ گونه

اطلاعاتی درباره کیفیت جریان در مقطع آزمون در دسترس نبود

و نیاز به تصمیم‌گیری شد که در کلیه رژیم‌های کاری (زیر

1381 شهرویور

شماره 1

سال 31

استقلال
مورد مقایسه قرار گرفته است. اختلاف مشاهده شده ناشی از دقت در ساخت مدل مورد آزمایش است که اختلافات جزئی با مدل استاندارد دارند. همچنین نوع دماهایی ایان در مدل تیز با هم متفاوت است. در ساخت مدل بعدی از TTC پیش‌تر از استفاده شده است و اندازه‌گیری‌های گردد که با اختلافات نیز از بین برود. ضمایم کیفیت جراحان در تونل بادانشکاه امام حسین با کیفیت و شرایط جراحان در تونل مراجع (6) متقاوت است چون تونل مرجع (7) از نوع دمنده است و لی تونل حاضر مکنده است. احتمالاً برخی از اختلافات حاصله به دلیل کیفیت جراح و برخی دیگر به دلیل مدل است.

شکل ۳- خطوط همسترال عدد میان در مقطع کاری تونل

شکل ۴- تغییرات Cn با زاویه حمله در مدل اول
در شکل‌های (5-الف) و (5-ب) تغییرات نسبت به زاویه C_N حجم در عددی که در مدل و مقدار $\alpha = 10^{-5}$، مقدار $M_{\infty} = 2.2$، $M_{\infty} = 0.6$ به دست آمده است. همانطور که در
شکل (5-الف) مشاهده می‌شود در روزی زیر به صورت تغییرات
$\alpha \approx 70^\circ$
با زاویه حمله برای هر دو مدل تا زاویه حمله C_N
تقبریاً یکسان است و در زاویای حمله بالاتر
مربوط به C_N
مدل دوم بیشتر از مدل اول است که اکنون
ناسبی از ضریب لاغری در هر دو مدل است. لازم به ذکر است
که در مدل اول مدل اکنون نوع ماسی است. نتایج
اقتصادی در
ضریب لاغری بدهی، ضخامت و
تاریک‌کننده است که اکنون

به معنی‌های عدد رینولدز است.

در شکل (7) اثرات عدد رینولدز روی ضریب نیروی
محوری C_A مدل اول در عددی که در مدل
است. در این شکل حساسیت ضریب نیروی محوری نسبت به
تغییرات عدد رینولدز کامل است. با افزایش عدد
کاهش می‌یابد که نمایی که نیروی خود تابعی از عدد
ماخ است. با افزایش عدد ماخ از دو مدل
ضریب‌های تشكلیک شده در جلوی مدل باعث افزایش نیروی
محوری می‌شود. لازم به ذکر است که در عدد
زاویه حمله C_N
مربوط به C_N
با عدد

در شکل (6) اثر عدد رینولدز روی C_A در مدل اول

تغییرات ضریب نیروی محوری C_A در زاویه حمله صفر با
عدد ماخ به‌صورت کلی از پیشنهادهای و نتایج
مراجع [5] مربوط به مدل

148

استقلال، سال 31، شماره 1، شهریور 1381
همان طوری که در شکل مشاهده می‌شود نتایج این آزمایش با \(M_{0.0} \geq 1.5 \) که فقط در عده‌های تأثیر آورده شده است، همخوانی نسبتاً خوبی دارد. در مقایسه با نتایج برنامه رایانه‌ای نیز در عده‌های مخ صوت \(R < 1 \) و \(M_{0.0} \geq 1.5 \) اختلافات موجود بسیار اندک است. عده اختلاف نتایج در ناحیه حدود صوت \(1.3 R < R < 1.5 \) است.

که آن‌ها در دو دلیل به کنار هم نشسته و در نتیجه برای تحلیل موفقیت به پایک‌شدن نیست. مولکول‌های نیرویا از روابط نیمه‌تحریکی استفاده می‌کند که در ناحیه حدود صوت این روابط از دست نمی‌رود. همگونی در محیط صورت درجه تغییرات ضریب محدودی در مدل را از این ناحیه ایجاد می‌کند. این اختلافات با عده تأثیر آورده شده است. نتایج این برنامه رایانه‌ای با نتایج این روابط از دست نمی‌رود.

گزینه است که نشانگر آن است که در این زاویه حمله اثرات عدد مخ برای ضریب محدودی به مرتبه بیشتر از شرایط مشاهده است. نتایج (8) تغییرات \(C_{4} \) با عدد مخ در زاویه حمله 2 درجه برای

\(\beta \) و برای هر در مدل در شکل‌های \(9-10 \) و (9-\(\beta \)) نشان داده شده است. همان طوری که در شکل مشاهده می‌شود در سه‌تایی زیر صوت نیروی پیش‌بینی مربوط به مدل اول در تمام زوايا حمله آزمایش شده کمتر از نیروی پیش‌بینی مربوط به.
شکل ۹-الف- تغییرات C_p با زاویه حمله در عدد ماخ ۹/۶ برای هر دو مدل

شکل ۹-ب- تغییرات C_p با زاویه حمله در عدد ماخ ۲/۲ برای هر دو مدل

اثرات عدد ماخ روی ضریب پس در زواياي حمله مختلف برای مدل دوم در شکل ۱۰ تنش نداشته است. همانطوری که در شکل نشان داده شده است، همان عدد ماخ زیر صوت تغییرات ضریب نیروی پس با عدد ماخ در کلیه زواياي حمله آزمون شده بسیار ناچیز است، لذا از ماخ ۲/۵ تا ۱۰ مقدار ضریب نیروی پس در تمام زواياي حمله افزایش چشمگیری می‌باشد. افزایش چشمگیر ضریب نیروی پس بین این دو عدد ماخ ناشی از بی‌دی‌پیدایی صوتی است که در جریان مالفوق صوت به وجود می‌آید و باعث پدیدایی نیروی پسی موجی می‌شود و هر چه عدد ماخ پیش‌تر شود نیروی پسی موجی نیز افزایش می‌یابد و موج ضریب‌هایی به وجود آمده قویتر می‌شود.

۶- نتیجه‌گیری

آزمایشات متعددی در تولید با سه منظوره داشته‌امام حسین(ع) بر روی مدل های TTCP و راکت بالک خمیده در عدد‌های ماخ و زواياي حمله مختلف انجام گرفته است. نتایج حاصله با اطلاعات موجود و همگنی نتایج براندازه رایانه‌ای مقایسه شده است. ضرایب نیروی محوری و ضرایب نیروی C_p در مدل در عدد‌های ماخ و زواياي حمله مختلف با یکدیگر مقایسه

مدل دوم در همان زواياي حمله است. شکل (۹-الف)، در صورتی که برای عدد $M_a = 2.2$، مدل دوم نیروی پسی کمتری دارد. احتمالاً نیروی پسی زیادتر در مدل دوم در عدد $M_a = 0.6$ ناشی از پسای اصطکاکی یکشته است، زیرا طول این مدل از طول مدل اول بیشتر است که سبب ایجاد نیروی پسای اصطکاکی بیشتری می‌شود. لازم به ذکر است که ضریب پس در اعداد ماخ زیر صوت نیز پسای اصطکاکی بیشتر از پسای فشاری است که در زواياي حمله باین پسای اصطکاکی بیشتر از پسای فشاری است. در زواياي حمله $M_a = 0.5$ همانطوری که در شکل (۹) نشان داده شده است جدایی سبب می‌شود که نیروی پسای فشاری بر پسای اصطکاکی غلبه کرده و ضریب نیروی پسای برای هر دو مدل افزایش یابد.

در هر دو عدد ماخ آزمون شده در زواياي حمله بالا به نظر می‌رسد که پسای فشار زیادتر که دو مدل یکسان باشد که ناشی از پدیده‌های جریان است. در عدد $M_a = 2.2$، چون قطر C_p در کمتر است، بسیار بیشتر از پسای حاصله از پسای محوری. اگر نتیجه‌گیری که افت‌گرند کل است، کمتر است، نتایج به دست آمده از تولید نیز این پدیده را تأیید می‌کند.

۱۳۸۱، شماره ۱، شماره ۲۲

استقلال، سال ۲۲، شماره ۱، شماره ۱۳۸۱
فواید شد. با استفاده از بالاس شش مولفه سه‌بعدی خواهد شد.

ضریب گشدار جانین موشک که بیش از ۲۰ تا ۵۰ درصد از CFD استفاده می‌گردد. همچنین اثرات باکس‌های مختلف نیز مورد بررسی قرار خواهد گرفت.

قدرتانی

نگارنگان از زحمات معاونت محترم تحفیظات صنایع شهید باقری، به ویژه مدیریت آرودینامیک و مکانیک پرواز و همچنین بسیاری از دانشگاه‌های امام حسین (ع) که انجام این تحفیق‌ها را امکان‌پذیر ساختند صمیمانه تشکر و قدردانی می‌کنند.

شکل ۱۰- تغییرات C0 با زاویه حمله در اداد ماخ مختلف برابر مدل اول وارد تامه

۱. Wrap-Around Fins or WAF
۲. Coupling
۳. Sidewall Balance
۴. Fineness Ratio
۵. Trisonic
۶. Supersonic Rohmbo
۷. Semi-Empirical
۸. Friction Drag
۹. Slender body
۱۰. Wave Drag

مراجع

15. سلطاني. م. ر، فاضلی. ح. و فرهنگی ب، "مطالعه تجربی نیروهای آبرودینامیکی یک موشک بالک خمیده در عدد‌های مابین و زوايا خمله مختلف" انجمن کنفرانس سالانه مهندسی مکانیک و سیمون کنفرانس بین المللی مهندسی مکانیک انجمن مهندسان مکانیک ایران، ارديبهشت 1377 ص ص.207-317.