الگوریتم مورچه‌ای برای طراحی مسیر حرکت باربران خودکار در سیستم نک حلیه

کورش عشقمی و مرتضی کاظمی
دانشکده مهندسی صنایع، دانشگاه صنعتی شریف

چکیده- در این مقاله الگوریتمی ابتکاری برای حل مسئله طراحی مسیر حرکت باربران خودکار در سیستم نک حلیه معرفی می‌شود. در این مسئله هدف تعیین کوتاه‌ترین حلیه برای یک باربر خودکار در چیدمان کارخانه به همراه است که با هر دیپارتن لایه‌ای یک صفحه مشترک داشته باشد. برای این منظور در ابتدا با استفاده از خواص مسئله آن را به مسئله‌ای معرفی کرده و سپس با به کارگیری الگوریتم فرا ابتکاری سوژه‌های مسئله را حل می‌کند. نتایج آزمایشات کاربری مطلوب الگوریتم پیشنهادی در مقایسه با سایر روش‌ها در حل مسائل مربوط به سیستم نک حلیه نشان می‌دهد.

از اینکه کلیدی: طراحی مسیر حرکت باربران خودکار، الگوریتم مورچه‌ای، الگوریتم‌های فرا ابتکاری

Ant Colony Algorithm for the Single Loop Routing Problem

K. Eshghe and M. Kazemi
Associate Professor and PhD Student, respectively, Department of Industrial Engineering, Sharif University of Technology

Abstract: In this paper, a new algorithm for solving the single loop routing problem is presented. The purpose of the single loop routing problem (SLRP) is to find the shortest loop for an automated guided vehicle covering at least one edge of each department of a block layout. First it shown that this problem can be represented as a graph model. Then a meta-heuristic algorithm based on and colony system is developed for ALRP by using the properties of the graph model. Computational results show the efficiency of the proposed algorithm in comparison with other techniques for solving SLRP.

Keywords: Single loop routing problem, Ant colony optimization algorithm, Meta-heuristic algorithms

* دانشیار ** دانشجوی دکترا

استقلال سال 1383 شماره 1 شهریور
1- مقدمه

در سیستم حمل و نقل خودکار استفاده از باربران خودکار (AGV) از جمله سیستمهای جانبی مخابراتی می‌شود که استفاده از آن در سال‌های اخیر روز به روز افزایش می‌یابد. دلیل این امر نیز تبعیض صندلی‌پذیری بایای این تجهیزات در سیستم جانبی‌مایی می‌باشد. باربران خودکار خروج‌هایی به‌دست می‌آورند که توسط رابط کنترل شده و برای انتقال مواد از نقطه‌ای به نقطه‌ای دیگر در چیدمان کارخانه مورد استفاده قرار می‌گیرند. یکی از مهم‌ترین عوامل در طراحی سیستم حمل و نقل AGV آن است که کل فاصله طی شده توسط در سیستم شده کمینه AGV که می‌توان از سیستمهای ستی، کوانتهاینز سیستم دو طرفه و سیستم SLRP همکاری‌هایی برای مسیرپیمایی وجود دارد که در این مقاله مسیرپیمایی سیستم SLRP تک حلقه اکثریت کرد. در این مقاله سیستم SLRP تک حلقه در حالت مورد بررسی قرار می‌گیرد. در سیستم تک حلقه، هدف طراحی یک حلقه نسبت به غیر مقاطع در کارخانه به نحوی تک حلقه دیپلمه کارخانه حداکثر بین یکی از اضافه این حلقه دسترسی داشته باشد. این مسئله در سیستم مسیرپیمایی سیستم SLRP تک حلقه می‌باشد. آن این باعث می‌شود که این اکثریت سیستم SLRP نشان خواهیم داد.

2- معرفی الگوریتم مورچه‌ای (ACO)

الگوریتم فرا ایکتیوی بهینه‌سازی بر مبنای رفتار فریم‌ار (ACO) در اصل دهه سیالی توسط دیوید، ماتیزو و کارنی [4 و 6] معرفی شد. این الگوریتم از رفتار اجتماعی مورچه‌ها الهام گرفته شده است. مورچه‌ها با آنکه فاقد قدرت بینایی اند می‌توانند کوانتهاین مسیر از منع غذایی تا لانه خوشی را با استفاده از مکان سازی‌های که در هنگام حرکت یک از قبیله می‌باشد، و از فریم‌ار مورچه‌ها در هنگام حرکت به‌کار گشتی می‌باشد. فریم‌نورفایی باقی‌مانده از بقیه مورچه‌ها را (به صورت تصادفی) دنبال می‌نمایند. از نظر مورچه‌ها مثبت مطلوب است که مقدار فریم‌نورفایی بیشتری داشته باشند. طریقه بافت کوانتهاین مسیر با استفاده از فریم‌رود شکل (1) نشان داده شده است.

3- مدل و تعیین مسیرپیمایی

حداقل R و در شکل (1) در نظر گرفته می‌باشد. مورچه‌ها به یک دوراهی ریسیده و مجبورند تحمیل گیرند که به سمت بالا یا مستقیم حرکت کنند. در این روش همجی رشته زد و در مورد بهترین انتخاب وجود دارد. بایایی مورچه‌ها مسیر حکمت خود را به سیرت نصاب‌دار می‌کنند. می‌توان انتظار

استقلال، سال ۱۳۸۳، شماره ۱، شهروز ۱۳۸۳

72
چه که فرورون یک یا بال یکی باشد آن یا بال از مشترک‌پیتی بالاتری برای انتخاب برخوردار است. در نهایت جواب‌های اولیه می‌شود که از مدل‌های در دست افتاده شده و احتمالاً نرخ‌بندی که جواب به‌همه‌ی وضعیت‌های کارآمد است. در اکثر مدل‌ها، که در مدل‌های مشترک‌پیش‌بری باید از این مدل‌ها، که در مدل‌های مشترک‌پیش‌بری B 124087

استقلال ۳-۳ شماره ۲۰، ۱۳۸۳

۷۳
شکل 1- روشی یافتن کوتاه‌ترین مسیر بین دو نقطه توسط مورچه‌ها

شکل 2- اف- نمایی از چیدمان یک کارخانه، د- نمایی از یک سمت، ف- مقایسه کارخانه، ج- یک حلقه موج در طراحی مسیر حرکت، ه- یک مثال از یک حلقه غیرموجه.

مجموعه بالاهای باشند که در گراف چیدمان می‌باشد. یک مجموعه از دیانترمانها را یکدارimpanهه گویند. در گراف بالاهای چیدمان نظر گرفته باید برای هر یک یک نمونه از دیانترمانها را در نظر بگیریم. نمایش گراف بالاهای چیدمان می‌تواند با توجه به چندین حلقه ایجاد شود.

اجماعی از چند دیانترمان یک‌دارimpanهه عبارت است از اجتماع بالاهای این دیانترمانها با یک شرط که بالاهای را که در مزرع بخصوص این دیانترمانها واقع شده‌اند را حذف کنیم. در شکل (4) اجتماع مزرعی دیانترمانها ۳ و ۴ و ۵ و ۶ و ۷ و ۸ و ۹ و ۱۰ که به‌صورت خطوط هاشور نمایش داده شده است تبیین می‌شود.

خطوط خیاطین نشان داده است: منظور از دیانترمان‌هایی نظیر مجموعه‌ای از دیانترمانها، یک دیانترمان از گراف چیدمان است که اول‌اًگه یک دیانترمان به دیانترمان‌های موجود در آن مجموعه باشد و ثانیاً بالاهای آن...
1- یافتن جواب‌های موجه منطقه از روی گراف SLRP

چیدمان

همان گونه که قبل از دیدن حرکت جواب‌های موجه از یک منطقه سیستم راه چیدمان نشان داد که آن یک جواب‌های موجه سیستم ایمن حلقه در حیات از اجتماع مرزی دیگر از لحاظ دیگر یکی از جواب‌های موجه داشته که این حرکت با فرض موجه بودن حلقه در نتیجه است. برای مثال در شکل 4 زیر گراف الگویی نشان داده که در آن تمامی گره‌های مجاور گره‌هایی برچسب دار یا یک نحاواد داشته که این حرکت با فرض موجه بودن حلقه در نتیجه است.

دشت. که تمام گره‌های مجاور یکی از اجتماع مرزی دیگری داشته که این حرکت با فرض موجه بودن حلقه در نتیجه است. برای مثال در شکل 4 زیر گراف الگویی نشان داده که در آن تمامی گره‌های مجاور گره‌هایی برچسب دار یا یک نحاواد داشته که این حرکت با فرض موجه بودن حلقه در نتیجه است.

2- حداکثر یکی از گره‌های مجاور یک گره غیر برچسب دار

چیدمان از اجتماع مرزی دیگری داشته که این حرکت با فرض موجه بودن حلقه در نتیجه است.

3- حداکثر یکی از گره‌های مجاور یک گره غیر برچسب دار

چیدمان از اجتماع مرزی دیگری داشته که این حرکت با فرض موجه بودن حلقه در نتیجه است.

4- حداکثر یکی از گره‌های مجاور یک گره غیر برچسب دار

چیدمان از اجتماع مرزی دیگری داشته که این حرکت با فرض موجه بودن حلقه در نتیجه است.

75

استقلال، سال 32، شماره 1، شهریور 1383
شرايط فوق در حقيقت شرايط كنار برای وجود زیر گراف
موجود بوده. اكنون به فرض زیر که شرايط کنار برای وجود یک
زیر گراف موجه را باند می کنند توجه کنید:
$G' = \left(V'_U, E'_U \right)$ (فرض کنید یک زیر گراف الکتریکی متعلق
از یک گراف چیمانی داده است. اگر گراف
زیر صدق کند آنگاه یک زیر گراف موجه است:
1. همیپن باشد.
2. حدااقل یکی از هر همیها مجاور به یک گره
موجود V'_U باشد.
3. هر گره از مجموعه V'_U (غیر از گره صفر) دارای حدااقل
V'_U باشد.
4. گراف $G = G'_U$ همیپن باشد.

```
اینگاه حلقه ناشی از اجتماع مرزی دیپارتمانها متناظر با
اگرهای $V'_U$ را در نظر بگیرید. شرط 1: پیشامک آن سیستم که
دارای دیپارتمانها یک یکی یکی یکی همیپن و تشکیل یک حلقه پیوسته را
می دهد. شرط 2: شخصی می کند که حلقه مدرک با هر دیپارتمان حدااقل
دارای یکی ضعع مشترک است و شرایط 2 و 3 از وضع حاصل
جلوگیری می کند.
```

5- الگوریتم بفتن "زیر گراف موجه".

یک نویجه به قضیه بهبود یافته می توانیم تیپ هر گراف منطبقه
به صورت کنار جواب یافته (SLRP) مسئله است که دیپارتمانها وابسته به آن
غیر تدریج الگوریتم زیر باشد.
اگر مجموعه دیپارتمانها حفرهایی باشد آنگاه مرز این
مجموعه با تشکیل حلقه جدا از هر گره نظیر تنها گره
V'_U که در شکل 2 اجتماع مرزی شرکت دیپارتمانها
9.8.5.0.4.3 و
10 باشد و این که دیپارتمان از مجموعه دیپارتمانها حفره دارد
وجود دارد که تمام دیپارتمانها مجاور به یک منطقه بر حسب
و لذا نیاکنده بال مشترکی با حلقه داشته مانند شکل (4) و
وقتی که مجموعه ما شامل دیپارتمان 9.8.7.6.5.4.3 و
10 باشد در این حال دیپارتمان 6 با یک باشم مشترکی با حلقه ایجاد
شده تدریج.

76

استقلال، سال 1323، شماره 1، شهریور 1383
جواب موجه برای مسئله می‌کند. مورچه‌ها ساختن جواب خود را زمانی افزایش می‌دهد که مورد فیزی جواب خود را تکمیل کرده باشند. در این مسئله جواب‌هایی با یک زیرگراف از کران‌های مشخص می‌باشد. از آنجا که چنین زیرگرافی در حقیقت یک زیرگراف قابلیت از گراف‌های مشخص است، به شکلی مشخص مجموعه گره‌هایی که آن را به صورت منظوره فردی مشخص می‌شود در محفظه ساختن یک جواب سحله توسط هر یک از مورچه‌ها نظیر مورچه k می‌باشد. نخورده ماجور باشد. ب اکر از گراف‌های مسئله یک زیرگراف قابلیت را حذف کنیم همچنان همین‌مان بقی بماند.

اگر چنین گرافی پیدا شد، مجددا از گام ۱ شروع کنید.

۲- گره را به مجموعه گره‌های برجسته‌دار اضافه کنید و زیرگراف قابلیت حاصل از گره برجسته را با توجه به این گره تعیید دهید. اگر هر گره غیر برجسته‌دار مجاور یکی از گره‌های این زیرگراف باشد متوسط شود. در این صورت یک گراف موجه به‌دست آمدی است. ثبیت این صورت به گام ۲ برگردید.

زیرگراف به‌دست آمده از این الگوریتم از آنچه که در گام جزئی نشان داده نشده است باید بکار در ساختن شده برای در نهایت همین‌مان بقی بگردد و به‌دست می‌شود. در این الگوریتم برای انتخاب دو مورد به این انتخاب مناسب‌ترین دو موردی می‌تواند باید راه‌حل به‌دست آنکه این به‌طور میزانی به‌دست آن موردی را یک چهارم بجای است. در نهایت منجر به یک زیرگراف موجه خواهد شد.

ACO

حل مسئله SLRP به کمک الگوریتم ACO در بخش ۴) جواب موجه برای یک مسئله SLRP را به‌صورت یک زیرگراف از گراف‌های برجسته بیان کرده و در بخش (۵) الگوریتم برای پایه طراحی نمود. اینکه می‌توان از این الگوریتم در الگوریتم به اکر در ACO شرح زیر استفاده کرد.

شماره موجه استفاده کرده: در این الگوریتم m موجه را به‌صورت تصادفی در گرای از مسئله می‌باشد. جرز گراف برجسته مورد انتخاب وجود نداشته فاکتور ساختن جواب توسط این مورچه مجدداً از نو آغاز می‌شود.

استقلال، سال ۱۳۸۲، شماره ۱، شهریور ۱۳۸۲
زمانی که تمامی مورچه‌ها جواب خود را تکمیل کرده مطابقت آن توسط استفاده از قاعده به هنگام کردند ۲۵
اندکی کاملاً می‌باشد. این قاعده باعث شده که مطابقت
گرهای به‌صورت پویا در حال تغییر باشد و از همکاری شدن
جویاها در اطراف یک به‌هم‌حال جلوگیری شود. این قاعده از
این اصل طبیعی ناشی می‌شود که همواره مقداری از قراردادی
که مورچه‌ها برای یک مسیر بالا می‌گذارند به‌دلیل تبیخ
بین می‌رود. برای به هنگام کردن فرآیند گره‌های موجود در
قرار چیدمان از معادل‌زیر استفاده می‌کنیم:

\[
\tau_i = (1 - \rho) \tau_i + \rho \Delta t_i
\]

در این معادله \(\Delta t_i \) است که منظور از طول بهره‌های حلقه بی‌بست آد دیک تکرار
کننده الگوریتم است و \(\rho \) نیز به نام پارامتر تبیخ است. هدف
از معادله فوق آن است که اگر گره‌های متعلق به به‌تین‌ر حلقه
موجه تا تکرار کننده ناشد مقدار فرومون کمترخواهد شد و
اگر گره‌های متعلق به به‌تین‌ر حلقه موجه بود اگر چه به دلیل
تبیخ مقدار از فرومون آن کم می‌شود اما این مقدار به اندازه
سایر گره‌ها نخواهد بود.

از ترکیب الگوریتم بافت \(\text{زیر گراف موجه با قواعد ذکر SLRP} \)
شدید به پاس الگوریتم موجه‌های برای حل مستقل

هم‌بسته باز الگوریتم سریع حالت سطح

به‌صورت زیر بی‌بست می‌باشد:

\[
\begin{align*}
\text{گام ۱:} & \text{ شماره‌نامه تکرار الگوریتم} \text{یک} \text{ کرر} \text{داده} \text{هستی}
\text{اگر} \text{یک} \text{ مقدار} \text{کمتر} \text{یا} \text{منوی} \text{یک} \text{ سناریو} \text{یک} \text{بار داده} \text{هستی}
\text{کام ۱:} & \text{ اگریر} \text{یک} \text{ مقدار} \text{کمتر} \text{یا} \text{منوی} \text{یک} \text{سناریو} \text{یک} \text{بار داده} \text{هستی}
\text{انهای از مسیر به‌تین‌ر حلقه}
\end{align*}
\]

کام ۱: یک گره غیر از گره صفر با بی‌بست تصادفی از گراف
چیدمان برگزاری و آن را برچسب داد کننده مورد
کم را برچسب داد کننده مورد
بین می‌رود. اگر این گره به تمام گره‌های دیگر گراف
(غیر از گره صفر) منطبق باشد حلقه موجه بروز می‌رود

دیوارتن قرار داده و به گام ۲ بروید.

استقلا، سال ۱۳۸۳، شماره ۱، شهریور
جدول ۱ - نتایج محاسباتی حاصل از اجرای الگوریتم بر روی ۳۲ مسئله نمونه

<table>
<thead>
<tr>
<th>BI</th>
<th>Average</th>
<th>Worst Solution</th>
<th>Best</th>
<th>Time (sec)</th>
<th>#Dept.</th>
<th>Name</th>
<th>NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>0.073</td>
<td>10</td>
<td>A1</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>0.113</td>
<td>10</td>
<td>A2</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>0.047</td>
<td>10</td>
<td>T1</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>234</td>
<td>234</td>
<td>234</td>
<td>0.065</td>
<td>10</td>
<td>T2</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>340</td>
<td>240</td>
<td>240</td>
<td>0.056</td>
<td>10</td>
<td>F1</td>
<td>5</td>
</tr>
<tr>
<td>30</td>
<td>224</td>
<td>224</td>
<td>224</td>
<td>0.075</td>
<td>10</td>
<td>F2</td>
<td>6</td>
</tr>
<tr>
<td>30</td>
<td>224</td>
<td>224</td>
<td>224</td>
<td>0.062</td>
<td>10</td>
<td>F3</td>
<td>7</td>
</tr>
<tr>
<td>30</td>
<td>188</td>
<td>188</td>
<td>188</td>
<td>0.085</td>
<td>10</td>
<td>F4</td>
<td>8</td>
</tr>
<tr>
<td>20</td>
<td>425.5</td>
<td>452</td>
<td>422</td>
<td>0.325</td>
<td>20</td>
<td>A10T20</td>
<td>9</td>
</tr>
<tr>
<td>30</td>
<td>490</td>
<td>490</td>
<td>490</td>
<td>0.401</td>
<td>20</td>
<td>A20T10</td>
<td>10</td>
</tr>
<tr>
<td>30</td>
<td>373</td>
<td>373</td>
<td>373</td>
<td>0.267</td>
<td>20</td>
<td>F10F20</td>
<td>11</td>
</tr>
<tr>
<td>25</td>
<td>396.5</td>
<td>404</td>
<td>396</td>
<td>0.295</td>
<td>20</td>
<td>F30F40</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>416.8</td>
<td>426</td>
<td>402</td>
<td>0.326</td>
<td>20</td>
<td>A10F20</td>
<td>13</td>
</tr>
<tr>
<td>30</td>
<td>504</td>
<td>504</td>
<td>504</td>
<td>0.433</td>
<td>20</td>
<td>A20F40</td>
<td>14</td>
</tr>
<tr>
<td>30</td>
<td>430</td>
<td>430</td>
<td>430</td>
<td>0.274</td>
<td>20</td>
<td>T10F10</td>
<td>15</td>
</tr>
<tr>
<td>29</td>
<td>400.6</td>
<td>434</td>
<td>398</td>
<td>0.329</td>
<td>20</td>
<td>T20F30</td>
<td>16</td>
</tr>
<tr>
<td>30</td>
<td>600.7</td>
<td>658</td>
<td>592</td>
<td>0.850</td>
<td>30</td>
<td>A10T20F30</td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>592.8</td>
<td>612</td>
<td>580</td>
<td>0.727</td>
<td>30</td>
<td>F10A10T20</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>598.3</td>
<td>610</td>
<td>580</td>
<td>0.895</td>
<td>30</td>
<td>F20A20T10</td>
<td>20</td>
</tr>
<tr>
<td>27</td>
<td>530</td>
<td>554</td>
<td>526</td>
<td>0.717</td>
<td>30</td>
<td>F30A10T20</td>
<td>21</td>
</tr>
<tr>
<td>29</td>
<td>602</td>
<td>752</td>
<td>598</td>
<td>0.649</td>
<td>30</td>
<td>F40T10A20</td>
<td>22</td>
</tr>
<tr>
<td>26</td>
<td>588</td>
<td>598</td>
<td>584</td>
<td>0.875</td>
<td>30</td>
<td>F10F20F30</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>536</td>
<td>538</td>
<td>534</td>
<td>0.700</td>
<td>30</td>
<td>F20F30F41</td>
<td>24</td>
</tr>
<tr>
<td>24</td>
<td>675.4</td>
<td>750</td>
<td>664</td>
<td>1.451</td>
<td>40</td>
<td>A10F20T10T20</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>374</td>
<td>784</td>
<td>710</td>
<td>1.445</td>
<td>40</td>
<td>F10F20F30F40</td>
<td>26</td>
</tr>
<tr>
<td>1</td>
<td>701</td>
<td>725</td>
<td>680</td>
<td>1.379</td>
<td>40</td>
<td>F20F31F42F13</td>
<td>27</td>
</tr>
<tr>
<td>17</td>
<td>698</td>
<td>732</td>
<td>680</td>
<td>1.549</td>
<td>40</td>
<td>F30F41F12F23</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>757</td>
<td>786</td>
<td>728</td>
<td>1.435</td>
<td>40</td>
<td>F40F11F22F33</td>
<td>29</td>
</tr>
<tr>
<td>15</td>
<td>655.6</td>
<td>684</td>
<td>642</td>
<td>1.470</td>
<td>40</td>
<td>A10T10F10F30</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>694.3</td>
<td>756</td>
<td>640</td>
<td>1.682</td>
<td>40</td>
<td>T20A10F20F40</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>833.4</td>
<td>892</td>
<td>770</td>
<td>1.626</td>
<td>40</td>
<td>A10F10A20F20</td>
<td>32</td>
</tr>
</tbody>
</table>

جدول ۲ - مقایسه نتایج الگوریتم مورچه‌ای و الگوریتم مرجع [۱]

<table>
<thead>
<tr>
<th>متوسط زمان حل الگوریتم مرجع [۱] (ثانیه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>متوسط زمان حل الگوریتم مورچه‌ای (ثانیه)</td>
</tr>
<tr>
<td>"ب"</td>
</tr>
<tr>
<td>"ب"</td>
</tr>
</tbody>
</table>

جدول ۳ - نتایج حاصل از اجرای الگوریتم مورچه‌ای بر روی مسئله بزرگ

<table>
<thead>
<tr>
<th>تعداد مسئله‌های موجود در مسئله</th>
<th>تعداد دیارتامنه‌های موجود در مسئله</th>
<th>تعداد مسئله‌های حل شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>"ب"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"ب"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

متوسط زمان حل الگوریتم مورچه‌ای (ثانیه)
برای مسئله بررسی زمان در زمان قابل قبول حل تقیی می‌گردد که این موضوع با اجرای الگوریتم بر روی 10 مسئله بررسی می‌شود. این مسئله مشخص است با استفاده از الگوریتم‌ها که توسط کاربردی تولید شده بررسی شد که نتایج آن در جدول (3) آمده است.

لازم به ذکر است که برای مسئله عملی حداکثر دیارتان مورد بررسی معمولاً کمتر از 100 دیارتان است که با توجه به آن می‌توان گفت که الگوریتم مورچه‌ای قادر است جواب نزدیک به بهینه با برای چنین مسئله در زمان کوتاهی تولید کند.

شناسه است و حاصل از اجرای الگوریتم مذکور بر روی شبکه

پیشرفته است که همان‌گونه که مشخص است با افزایش تعداد دیارتان‌ها هم بر زمان اجرای الگوریتم مرجع [1] افزوده می‌شود و هم برای مسئله با بکار بردن از 40 دیارتان به دلیل افزایش ابعاد مسئله الگوریتم مذکور قادر نیست جواب بهینه را تعیین کند. این اشکال زمان حل در الگوریتم مورچه‌ای یک سیاست کمتر به جشن می‌خورند و علیرغم اجرای الگوریتم بر روی رایانه شخصی زمان اجرای آن مسرع‌تر از الگوریتم مرجع است. همچنین این علت وظیفه به بررسی‌های عمده الگوریتم مورچه‌ای قادر است

واژه‌نامه

1. automated guided vehicles
2. single loop routing problem
3. ant colony optimization
gpheromone
4. layout graph
5. planar graph
6. induced subgraph
7. global updating rule

مراجع