چکیده - فرآیند خمکاری شعله ای یکی از روشهای شکلدهی ورقه‌ای فولادی است. در این فرآیند با اعمال گرمای ناشی از شعله مسلح گازی و سپس خنک کردن کان سرد واقع در راستای مسیرهای معین روی ورق، به آن شکل می‌دهند. با توجه به ابزار ساده به کار رفته در فرآیند، روش اقتصادی و جدابی است. در حال حاضر این فرآیند به صورت دستی و براساس تجربه‌های ماهر انجام می‌شود. روش تجربی عمدتاً اتماسی است و در این قالب روی برای شیب‌های سازی تغییر شکل ماده در حین فرآیند ارائه می‌شود. با توجه به خاصیت فیزیکی فرآیند از تحلیل تغییر شکل بزرگ ترمولاستیک پلاستیک استفاده شده است. در این روش راه حل تحلیلی جدیدی برای تحلیل انتقال گرما در ورق اعمال شده است. حل تحلیلی انتقال گرما به هنگام حل عضوی اجرای معنوی تغییر شکل ورق در محیط نرم افزار ANSYS قادر به توضیح و تفسیر مشاهده‌های تجاری است. در مقایسه با نتایج سایر محققان و انداده‌های تجربی، شبیه‌سازی‌های به عمل آمده نتایج محاسبه‌ای به دست آمده از نوع و نتایج این شبیه‌سازی‌ها می‌توان برای مطالعات اتماسی فرآیند استفاده گرد.

واژگان کلیدی: شکلدهی ورق، فرآیند خمکاری شعله‌ای، تحلیل ترمول الاستیک پلاستیک

Thermo-Elastic-Plastic Analysis of Plate Forming Process by Flame Bending Method

Seyyed Jalal Hemmati, M.A. Niazi, M. Maarefat, and R. Naghdabadi
Faculty of Engineering, Tarbiat Modarres University
Mechanical Engineering Department, Sharif University of Technology

Abstract: Flame bending process is one of the forming processes of steel plates. During this process, plate is formed with heating by gas torch flame followed by controlled cooling along specified paths. Considering simple tools used in the process, it is a popular and economical forming method. At present, this process is manually done on the basis of skilled technician’s
experience. Experimental and non-automated procedures decrease productivity of the process. In this paper, a method is proposed for simulation of material deformation. Regarding the physics of the process, large deformation thermoelastic-plastic analysis has been applied. In the simulations, a new analytical solution is used for thermal analysis of plate. The analytical solution along with finite element analysis of the deformation in ANSYS program is able to interpret experimental observations. The simulations show reasonable results, compared with the analytical results by other researchers and with experimental data. The method and simulation results can be used to study the process automation.

Keywords: Plate forming, Flame bending process, Thermo Elastic Plastic Analysis

1-Mقدمه

همکاران شغلی که از فرآیندهای شکل دهنده وراثی فولادی است. در این فرآیند با اعمال گرمایی و خنک کاری کنترل شده در اندازه م sưورهای معمول روز ورق، آن را شکل مده. وفتی یک طرف ورق نتوسط گرمی می شود در حالی که طرف دیگر آن خنک است. گرداگرهای دما به خصوص در استاتیک ضخامت، باعث ایجاد انسطابه گرمایی و در نتیجه ممان خشی و نیروهای صفحاتی گرمایی می شود که بهینه وسیله باعث تغییر شکل زاویه ای و اقتباسی صفحاتی ورق می شود. چون دما در منطقه زیرمنبع گرمی بالا و برکنار نشئ تنظیم درمان منطقه پایین است تغییر شکل پلاستیک اتفاق می افتد. در هنگام خنک شدن ورق سطح گرمی شده منقبض شده و باعث خشی مکانی ورق می شود. شکل (1) به طور شمانیکی ورق تحت اولوی و ورق شکل داده شده و مسئول گرمایش روی ورق نشان می دهد. در این شکل همیشه نحوه تغییر شکل زاویه ای ورق پس از اعمال هر خط گرمایش نمایش داده شده است. شکل (2) نمایش ای از ورقهای شکل داده شده به بیان این شکل نشان می دهد.

تحلیلینهای نظیر و عدید مختلفی برای پیش بینی پاسخ ورق در این فرآیند انجام شده است. روشی برای حل معادله دیوید توت آنالیز می شود و به بروز گرامی مسیر می شود. به این ترتیب بعدی عمود بر خم گرمایش استفاده کرده گردهادن که با استفاده از روش تغییر محدود می شود. در این مدل فرض می شود که توزیع گرمی کل شکل گرمایشی استیسکی، پلاستیکی و گرمایی کنترل می شود که در جهت پخت ورق خصوصی است. آن این فرض به همراه شرایط تاعدی، پیوستگی و مزی و سیستمی از
شکل 2- نمونه‌ای از وبهایی شکل داده شده به روش خمکاری شعله‌ای

۱- تحلیل اجرای محدود فرآیند بر بازه‌های تجاری مختلف توسط یو (۱۷) لی[۱۷]. کلئس[۸] و اویسیو[۸] انجام گرفته است. (اذا و همکاران۱۰) برای شیب سازی تغییر شکل ورق در فرآیندهای مختلف تحلیلگر گرما و تحلیلگر تغییر شکل مختصات تدوین کردند. در مطالعات انجام گرفته، تحلیل ترمومالاستیک تغییر شکل بر روی ساختار اعمال شده است. معیار فاکتور دما و تغییر شکل، کویل نشده و خاص ماده تابع دما ضریب می‌شود. در هر گام زمانی از تحلیل تغییر شکل، دماهای گری محاسباتی از تحلیل گرما به صورت پاراداگمایی در تحلیل الاستوپلاستیک اعمال می‌شوند.

در این تحقیق با استفاده از یک راه حل تحلیلی جدید برای تحلیل انتقال گرما در یک ترموکیفی سازی و یک ماده اعمال دما تغییر می‌شود. مولفان در کلی خود [۱۱] صحت و اعتبار تحلیل گرما فرآیند به روش فوق ارائه داده‌اند. در ادامه، با استفاده تماشای راه حل تحلیل برای ماده و تحلیل اجزای محدود تغییر شکل به کمک ۳۰۰۰، روشی برای شیب سازی ترمومالاستیکی فرآیند ارائه می‌شود.

۲- روش تحلیل و فرضیات

در فرآیند خمکاری شعله‌ای ماده تحت اثرات گرما و وزن خود، دچار تغییر شکل داده می‌شود. تقریباً تمام تغییرات شکل پلاستیکی ماده در فصل مشترک شعله به سطح ورق اتفاق می‌افتد و

می‌افتد و مابقی قسمتها فقط تحت تغییر شکل‌های الاستوپلاستیک فرآیند گرما و تغییر شکل مربوط به ترمومالاستیک می‌شود و مواد پیرامون آنها در بر این تغییر شکل مقاومت می‌کنند. ماده واقع در زیر شعله تحت تغییر شکل انباشته و کرنش کوچک اعمال شده است. معیار فاکتور دما و تغییر شکل، کویل نشده و خاص ماده تابع دما ضریب می‌شود. در هر گام زمانی از تحلیل تغییر شکل، دماهای گری محاسباتی از تحلیل گرما به صورت پاراداگمایی در تحلیل الاستوپلاستیک اعمال می‌شوند.

در این تحقیق با استفاده از یک راه حل تحلیلی جدید برای تحلیل انتقال گرما در یک ترموکیفی سازی و یک ماده اعمال دما تغییر می‌شود. مولفان در کلی خود [۱۱] صحت و اعتبار تحلیل گرما فرآیند به روش فوق ارائه داده‌اند. در ادامه، با استفاده تماشای راه حل تحلیل برای ماده و تحلیل اجزای محدود تغییر شکل به کمک ۳۰۰۰، روشی برای شیب سازی ترمومالاستیکی فرآیند ارائه می‌شود.

\[q(r) = q_{\text{max}} \exp(-\gamma r^2) \]

(1)

\[q_{\text{max}} = \frac{q_{\text{eff}}}{\pi} \]

(2)

شکل 1- ورق تحت اولیه و سطح نهایی پس از فرآیند خمکاری شعله‌ای

در این تحقیق پارامترهای ورودی برای تحلیل ترمولاسیتک پلاستیک عبارتند از: سرعت حرکت مشعل (v), سیالشکل (φ), ضریب ترمکز شعله (η), ابعاد ورق در مرحله مدلسازی و مش بندی به عنوان پارامترهای ورودی

شکل 3- روش تحلیل ترمولاسیتک پلاستیک تغییر شکل ماده

شکل 4- مدل توزیع گویش شار گرمایی شعله و سیستمهای مختصات ساکن و متحرک در نظر گرفته شده
تحلیل گرماپیمای فرایند به کار رفته است. در تحلیل گرماپیمایی از تبدیل گرماپیمای واقعاً تا هوا اطراف به صورت هم‌رفت و تابش صرف نظر شده و نمایند با فرض، هنک کار دیگری هم استفاده نمی‌شود. همچنین خواص مواد مستقل از دما و دما نگهدارنده گرماپیمایی ورودی و تحلیل گرماپیمایی دماپای گرماپیمایی محاسبه شده به عنوان یک مدل تحلیل ترمو الاستیک پلاستیک استفاده می‌شود. در این مدل‌ها بزرگ توان نشان دهنده اینکه حجم ورودی به روز شده شدن قرار دارد محاسبه می‌شود. این مدل‌ها با روش انتخاب نوید تعداد اجرا‌های هشتم است. در شکل (5) مدل‌های بندی شده و در تحلیل‌های ترمومکانیک پویایی جهت گرماپیمایی ورودی و تحلیل‌های دماپای گرماپیمایی دیفرانسیلال محاسبه می‌شود. به دلیل تغییر شرایط گرماپیمایی و بلافاصله نتایج این فرآیند شده به توجه به حجم ورودی بسته به تعداد زیادی اجرا می‌شود. از اجزای گرم‌های استفاده‌ی می‌شود.

این مدل از اجزای گرم‌های استفاده‌ی می‌شود در مدل همگن و در فرآیندهای شعله‌ای در راستای محورهای مختلف به خصوص در راستای شش اجزای گرم‌پایانه گرماپیمایی به واروندی محور مکرر یک سیستم معادلات غیرخطی حجم است. بنابراین انتخاب نوع و تعداد اجزای هشتم است. در شکل (5) مدل‌های بندی شده و در تحلیل‌های ترمومکانیک پویایی جهت گرماپیمایی ورودی و تحلیل‌های دماپای گرماپیمایی دیفرانسیلال محاسبه می‌شود. به دلیل تغییر شرایط گرماپیمایی و بلافاصله نتایج این فرآیند شده به توجه به حجم ورودی بسته به تعداد زیادی اجرا می‌شود. از اجزای گرم‌های استفاده‌ی می‌شود.

این مدل از اجزای گرم‌های استفاده‌ی می‌شود در مدل همگن و در فرآیندهای شعله‌ای در راستای محورهای مختلف به خصوص در راستای شش اجزای گرم‌پایانه گرماپیمایی به واروندی محور مکرر یک سیستم معادلات غیرخطی حجم است. بنابراین انتخاب نوع و تعداد اجزای هشتم است. در شکل (5) مدل‌های بندی شده و در تحلیل‌های ترمومکانیک پویایی جهت گرماپیمایی ورودی و تحلیل‌های دماپای گرماپیمایی دیفرانسیلال محاسبه می‌شود. به دلیل تغییر شرایط گرماپیمایی و بلافاصله نتایج این فرآیند شده به توجه به حجم ورودی بسته به تعداد زیادی اجرا می‌شود. از اجزای گرم‌های استفاده‌ی می‌شود.

این مدل از اجزای گرم‌های استفاده‌ی می‌شود در مدل همگن و در فرآیندهای شعله‌ای در راستای محورهای مختلف به خصوص در راستای شش اجزای گرم‌پایانه گرماپیمایی به واروندی محور مکرر یک سیستم معادلات غیرخطی حجم است. بنابراین انتخاب نوع و تعداد اجزای هشتم است. در شکل (5) مدل‌های بندی شده و در تحلیل‌های ترمومکانیک پویایی جهت گرماپیمایی ورودی و تحلیل‌های دماپای گرماپیمایی دیفرانسیلال محاسبه می‌شود. به دلیل تغییر شرایط گرماپیمایی و بلافاصله نتایج این فرآیند شده به توجه به حجم ورودی بسته به تعداد زیادی اجرا می‌شود. از اجزای گرم‌های استفاده‌ی می‌شود.
جدول ۱- شرایط گرمایش در نظر گرفته شده برای تحلیل‌های عدید

<table>
<thead>
<tr>
<th>No.</th>
<th>h (mm)</th>
<th>v (mm/s)</th>
<th>q_{eff} (cal/s)</th>
<th>γ (mm^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>0.05</td>
<td>2475</td>
<td>0.040</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>0.15</td>
<td>770</td>
<td>0.0121</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>0.2</td>
<td>1300</td>
<td>0.0321</td>
</tr>
<tr>
<td>7-5-4</td>
<td>16</td>
<td>0.05-0.8</td>
<td>1300</td>
<td>0.0321</td>
</tr>
<tr>
<td>7-8-9</td>
<td>18</td>
<td>0.05-0.8</td>
<td>1300</td>
<td>0.0321</td>
</tr>
<tr>
<td>29-12</td>
<td>20</td>
<td>0.05-0.8</td>
<td>1300</td>
<td>0.0321</td>
</tr>
</tbody>
</table>

مقایسهٔ بین توپریز دمای محاسباتی در این تحقیق با نتایج (۱۰۰) انجام شده است. در این حالت به ازای ثانیه وزن و خواص گرمایی یکسان می‌باشند. ملاحظه می‌شود که در روش تحلیل‌های انتقال گرمایی به کار رفته در این تحقیق، این مقدار می‌کند و کمی پس از عبور مرکز شده است. این نتایج (تقریباً ۳۰ sec) دما به حداکثر خود می‌رسد. این لحاظته به بعد دما شروع به کم شدن می‌کند. آن‌گونه که در اینجا نشان داده‌است و سپس آن‌گونه که پیدا می‌کند همچنان در شکل (۸) است.
ضریب ترمیکه شعله $2475 \text{cal/sec} \cdot \text{mm}^{-2} \text{mm/sec}$ است. توان مولکول ضریب ترمیکه در $3000 \text{cal/sec} \cdot \text{mm}^{-2}$ و سرعت مشعل 50 در نظر گرفته شده است.

معادله (1) برای مدل ماتریس شار ورودی گرم‌ها اعمال شده است. توان موثر مشعل 486mm^{-2} است. انتخاب تا ارتفاع بالا مشاهده شود. ضریب ترمیکه شعله در مرجع [10] 231mm^{-2} تخمین زده شده است. با یادآوری شعله در این حالت مشعل شروع به پیشرفت در مرجع فوق غیر مستحکم می‌آید.

از روش اجزای محدود با فرض رفتار ترمومالاستیک کاملاً پلاستیک و تغییر شکل پر وزن ماهه استفاده شده است. بزرگ شدن تغییر شکل و رفتار ترمومالاستیک با تغییر مقدار 0.00782gr/mm^3 در شکل (9) تغییر شکل زاویه‌ای به شروع ورق به این زمان پیش آمده است. همان‌طوری که از این شکل ملاحظه می‌شود رفتار ماهه در زمان می‌تواند کسی است.

در اینجا ورق دیگر فرم مکانیکی می‌شود ویژگی لوله به تندریج با گرم شدن آن خصوصیات شکل زاویه‌ای ورق عکس شده و مقدار آن به سمت مقدار واحدی می‌کند. به طوری که تقریباً از $r=0.8$ به بعد، تقریباً پاسخ هر دو روش پیکسان و تقریباً $r=0.02$ است.

در شکل (1) برای ترمولومالاستیک شده انقباض صفحه‌ای ورق به ازای مختصه ترمولوماله شده مختصات نقاط در جهت عرضی رسم شده است. در این برای بیان شکل پر وزن ورق و لوله کردن شده و پیش از ورق کشیده شده. به عبارات بهتر صفحه میانی ورق نیز دارای جابه جایی خواهند بود. لذا مظهر از عبارات انقباض مثبت، احساس این صفحه است. در این شکل به ازای 0.5 نتیجه هر مطالعه پیکسان است. لیا برای زمان‌های کمتر رفتار ورق متفاوت خواهد بود. در منحنی مربوط به نتایج این (1) مقدار انقباض نقاط در زمان این برای ترمومالاستیک نتیجه است. مختصات نقاط ورق نقش ورق در ورود به ناحیه مربوط به شکل (11) راستا مناسب می‌شود. در صورتی که با رجوع به شکل (11) مشاهده می‌شود نقطه مرکز ورق در ورود به نقطه مرکز ورق در این امکانات انگر الگوریتم کاهش در استفاده شده است.
شکل 9- مقایسه تغییر شکل زاویهای به شروع ورق محاسبه شده در [10] و این تحقیق

شکل 10- مقایسه انقباض صفحه‌ای ورق محاسبه شده در [10] و این تحقیق

شکل 11- مقایسه کرنش پلاستیک در راستای ضخامت ورق

راستا دچار کرنش فشاری پلاستیک می‌شود. در شکل (10) مقصول است. از طرف دیگر پدیده ای که غالباً در فرآیندهای گرمایش خطره‌ای اتفاق می‌افتد این است که در راستای خط گرمایش نوعی انتانژیکی ماده مانند خطوط بند انگشت به وجود می‌آید. شکل (12) این پدیده دریکی را نشان می‌دهد. منحنی مربوط به تحقیق مورد آزمونی در شکل (10) بروز این پدیده را

استقلال، سال 1364، شماره 2، استادان
مدل‌سازی شار ورودی انتخاب کرده است. شرایط گرماشی در مثال لی عبارتند از:

\[
\begin{align*}
\vartheta &= 1.2 \text{ [mm/sec]} \\
p_{\text{eff}} &= 800 \text{ [cal/sec]} \\
\gamma &= 0.164 \text{ [cm}^2\text{]}^{-1}
\end{align*}
\]

در شکل (13) منحنی‌های دما–زمان مربوط به هر دو تحقیق نشان داده شدهاند. همانطوری که ملاحظه می‌شود منحنی‌ها کامل برهم منطبقند. در شکل (14) نیز نمودارهای خیز–زمان برای نطاق مرکز برق در جریان ورم شده گشاده‌اند. این نمودارها نشان می‌دهد که سطح خیز برقی در هر دو روش یکسان و خواهد بود. از نتایج به دست آمده در لحظات اندیابی ملاحظه می‌شود گرما در جریان خمک‌سازی اوایل خواهد شد. همچنین از جدول (1) مجددا ضریب تمرکز شعله در روش قدری کمتر و یا کمتر مشاهده می‌شود. همانطوری که انتظار می‌رود به این صورت که یک میانداز دیگر جدید، مقدار خیز برقی شده تیز پرتاب است.

شکل (15) سطح مقطع کرنش پلاستیکی عرضی در ورق به ازای زمانهای مختلف را نشان می‌دهد. در این حالت نیز مقدار کرنش کمی بیش از مقدار بیش برقی شده در تحقیق لی است. علت این امر می‌تواند در موضعی بودن بیشتر تغییر شکل در روش تحقیق و در تبعیض میزان کرنش بیشتر می‌باشد.

قابل ذکر است که سطح مقطع کرنش فورت‌ذکر به طور تجربی افزایش گرفتند است. گرته شده است. شرایط گرماشی در دما مطالعه طوری انتخاب شده که توزیع دمای محاسباتی بر توزیع دمای گزارش شده در تحقیق لی [1] منطبق شود. از نظر شیب‌سازی گرماشی نورم انفجار ANSYS به عنوان برنامه تحلیلگر انتقال گرما و تغییر شکل استفاده کرده است. این نیز توزیع گوسی نرم‌افزار برای}

شکل 12- پیده‌های اندازه‌گیری موضع ماده در اطراف خط گرماشی (از چپ به راست)

خواص گرماشی نام و خواص مکانیکی به صورت تابع دما ذکر شده بود. این نتایج به تأیید که تمرکز بلور استیکی پلاستیک در نظر گرفته شده است. همیشه می‌رسد این مطالعه کاهش مصرف شعله دقیقی موجود بود و در نتیجه کمیت کرنش پلاستیکی را افزایش می‌دهد. از طرف دیگر اندازه میزان اعمال انحرافی که در تابع مطالعه ادا به طور قابل ملاحظه می‌باشد. نتایج تحقیق کاملاً عادی است. و گرته شده است. به این صورت که توزیع دمای مورد گزارش شده، نشان داده ای که هستند. این روش به رغم ذخیره زمان بردارش تا حدی تابع را تحت تأثیر قرار می‌دهد. البته با توجه به هم‌جز می‌توان تابع دما مطالعه دقت محاسبات منطقی به نظر می‌رسد.

در دو میلی‌متر، ورقی به اندازه [200×600 mm] در نظر گرفته شده است. شرایط گرماشی در دما مطالعه طوری انتخاب شده که توزیع دمای محاسباتی بر توزیع دمای گزارش شده در تحقیق لی [1] منطبق شود. از نظر شیب‌سازی گرماشی نورم انفجار ANSYS به عنوان برنامه تحلیلگر انتقال گرما و تغییر شکل استفاده کرده است. این نیز توزیع گوسی نرم‌افزار BRAY
شکل 12- منحنی‌های خیز-زمان تحقیق [V] و تحقیق فیزیک برای مرکز و راستای عرضی

شکل 13- منحنی‌های دما-زمان تحقیق [V] و تحقیق فیزیک برای مرکز و راستای عرضی

شکل 14- منحنی‌های خیز-زمان تحقیق [G] و تحقیق فیزیک برای مرکز و راستای عرضی

شکل 15- منحنی‌های کرنش پلاستیک-زمان تحقیق [V] و تحقیق فیزیک برای مرکز و راستای عرضی

شکل 16- منحنی محاسباتی خیز-زمان در تحقیق فیزیک و محاسباتی [16] و محاسباتی در تحقیق فیزیک در y = 20 mm از مرکز و راستای عرضی

شکل 17- منحنی محاسباتی خیز-زمان در تحقیق فیزیک و محاسباتی [16] و محاسباتی در تحقیق فیزیک در y = 20 mm از مرکز و راستای عرضی

استقلال، سال 1384، شماره 2، استقلال
شکل (19) مقایسهای بین نتایج محاسباتی در این تحقیق با داده‌های تجربی جانگ صورت گرفته است. همان طوری که در این شکل نیز مشاهده می‌شود نتایج شبیه‌سازی انتقال خورده با داده‌های تجربی نشان می‌دهند.

4- نتایج گیری

در این مقاله روش برای مطالعه مکانیزم تغییر شکل ورق در فرآیند چمکاری شعله‌ای ارائه شد. در این روش از راه حل تحلیلی میان، ماه و به‌دست آمده که این روش در حالت‌های ساده‌ای استفاده می‌شود. در این روش برای نتایج پایدار و دقیق، میزان اندازه‌گیری مشترک با داده‌های تجربی ملاحظه می‌شود. این روش مبتنی بر نیاز منحنی دما-زمان را برآورد می‌نماید. در این مقاله م‌می‌مزد و برای یکساک است. شکل (17) نمودار خیز-زمان برای نقطه مرکزی گرم شده در این شیب سازی را نشان می‌دهد.

شکل (16) منحنی دما-زمان تجربی و محاسباتی جانگ را نشان می‌دهد. به این ترتیب می‌توان به نتایج این مقاله از راه حل تحلیلی به کار رفته در تحقیق فعلی، منحنی شیب زمان-زمان در شکل (12) نشان داده شده است. در این شکل، میزان اندازه‌گیری با داده‌های تجربی ملاحظه می‌شود. همچنین برای مراکزی تخمینی به روش جانگ برای 1300 cal/sec گزارش شده که از جدول (1) ملاحظه می‌شود که برای سازه‌ای مانند تحقیق که این شکل مشاهده می‌شود این نقطه مرکزی برای بررسی نیاز است.

نتایج شبیه‌سازی به این روش هم‌خوانی خوبی با نتایج سایر محققان و داده‌های تجربی موجود دارند. پدیده‌های محاسباتی و واقعی پیش‌بینی شده‌اند. این روش می‌تواند در مطالعات پارامتری برای آینده استفاده کرد. در شبیه‌سازی‌های انجام شده تغییر شکل ورق نسبت به گزارش‌های موجود، موضعیت بوته و هرگاه پلاستیک برخی از ناحیه زیر شعله پیش بینی می‌شود.

بر اساس پارامترهای ویژه آزمایش‌های جانگ (تحلیل سوم) تحلیل‌های دیگری ترتیب داده شد. در

11. همیه س.، ج. نیازی، م. و. معروفی، م. و. نقدابادی، ر.، "تعیین تأثیر پارامترهای موتور در شکل دهی وریزهای یک کشی به روش گرماپیش خطی"، رساله دکتری، دانشگاه فنی دانشگاه تربیت مدرس.