بررسی ترمودینامیکی کاربرد موردیهای مختلف در یخبالهای خانگی

شهرام طالبی و علی اصغر اسمی
دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان

چکیده - با مطرح شدن مسائل زیست محیطی مانند تابوی شدن لاپی ازون و افزایش اثرات گازهای گرمگری و معلوم شدن نقش مغز در مصرف کنونی نیتریل، نیتریل، فنیلن، بروز زیست محیطی مانند تابوی شدن لاپی ازون مطرح می‌شود. در این مقاله بر نوع سیال مورد خالص و مخلوط) بر عملکرد ترمودینامیکی یک سیگال طراحی شده است. نتایج نشان داد که میزان طراحی است که کثرت ماده خالص مخلوط R134a و R32/R144b می‌تواند سایر ماده‌های متنوعی برای R12 پاسخ دهد.

 Thermodynamic Analysis of Refrigerators Using Different Refrigerants

S. Talebi and A.A. Rostami
Mechanical Engineering Department, Isfahan University of Technology

ABSTRACT - Refrigerants that are used in refrigeration systems, cause environmental difficulties such as depletion of ozone layer and greenhouse effect. Thus, we must find substitutes for such refrigerants, in this paper, the effect of refrigerant on the thermodynamics performance of refrigeration cycles are studied. To do this, a refrigerator that is designed for R12, is simulated. Results show that pure refrigerant R134a and mixture R32/R144b are convenient substitutes for R12.

1- اثرات زیست محیطی
فوتون 12 و 22 (۲۲) (R11، R12، R11، R12) کاربرد گسترشده‌ای در صنایع تیری به عنوان سیال برای یا عالی حاکمی تر از یک می‌باشد. در این جریان، از طریق جریان نپت با بررسی نیاز به سیاه شخصی از روش‌های معیار دارند. به این مناسبت، از افراد نیاز به سیال برای یا عالی حاکمی تر از یک می‌باشد.

2- دانشجوی دکتر
استقلال، سال ۱۴، شماره ۱، شماره ۱۳۷۶
درصدات. چون در مولاکول أكثر میردهای موردن استفاده می‌المانه آب کل و وجود دارد، این مواد تؤثیر زیادی بر لایه اوزن می‌گذارند. اگر ظرفیت تابوی نسبت به ارزان‌ترین پترولا یک فکری می‌باشد، این معنی رای باید R111 به ترتیب 250 ها تا 400 هر 0.5 درصد است.[۱]

بعضی از از آنها، که بر نظر شیمیایی با گازهای گلخانه ای معرفی می‌شوند و می‌توانند بر زندگی زمینی اثرات مرگ بگیرند. در این راستا، از مواردی چون اکسید کریزن (CO) به‌طور قابل توجهی وجود دارند. این مواد به سبب تهیه و ترکیب زمستان مورد بهره‌برداری قرار می‌گیرند. لذا از مواردی که در سطح زمین صحارا می‌گذرند، این مواد به اثر گلخانه‌ای معرفی می‌شوند. از انتخابه دمای زمین به خاطر اثر گلخانه‌ای مومیه در حدود ۴۱.۲ درجه سلسیوس، همیشه به‌دنبال انتخابه انواع مختلف مواد از آنها است. اگرچه این مواد از انتخاب مهم‌ترین سیستم‌ها برای انتخابه مورد استفاده است. اگرچه این مواد از انتخاب مهم‌ترین سیستم‌ها برای انتخابه مورد استفاده است.
سیستم‌های14 رکمی، شرکتی ضرب‌تکانگی گرمایشی در ر134 ویا134 می‌شود. هم‌خیاری ۲۰ درصد متوسط ۵۰ تا ۱۵ درصد بیشتر از12

سازگاری نسبی با ماسیون آتات سیستم داشته باشد. باید از نظر محیط زیست‌پذیری خود و در ضمن پیوسته راندمان سیستم را نیز افزایش دهد. از نظر پارامترکایک، مولکول یک مورد مناسب باید دارای یک یا دوم کرین باشد3. همچنین با افزایش تعداد انهمای کل در مولکول یک مورد، دما جوش نرم‌شمار (دمای اشباع در متغیران اصلی) افزایش می‌یابد. بنابراین در مواردی که گفته شده، افزایش تعداد انهمای کلیسیکی داده باشد. علت افزایش پیوسته نیز به تعداد انهمای کلیسیکی داده می‌گردد. این فلور باعث افزایش و تب هیدروزون باعث کاهش دما و مولکول یک مورد شود.

با توجه به محدودیت‌های فوق، باید به فکر استفاده از مدل‌های جدید و مخلوط باشیم. مدلیی در مدل‌های مخلوط در حین مدل‌های تک‌عملی و تک‌عملی، مدل‌های مخلوط در دیگر مدل‌های مدل‌های مخلوط در دیگر مدل‌های مدل‌های مخلوط در دیگر مدل‌های MT

\[
\begin{align*}
 PV &= \frac{1 + Y + \sqrt{Y^2 - Y^2}}{(1-Y)} \cdot \frac{a}{RT(V + b)} \\
 a &= a_x \cdot \exp(a_Y \cdot T + a_T \cdot T^3) \\
 b &= b_x + b_Y \cdot T + b_T \cdot T^3 \\
 a_x &= \sum_{i=1}^{n} x_i \cdot a_{ij} \\
 b_x &= \sum_{i=1}^{n} x_i \cdot b_{ij} \\
 a_{ij} &= (1 - f_{ij}) \cdot \sqrt{a_i \cdot a_j} \\
 f_{ij} &= \text{نیز، مدل‌های بررسی کرده‌اند. آزمایش‌های آنها نشان می‌دهد که مدل‌های مدل‌های مدل‌های مدل‌های مدل‌های مدل‌های MT

\begin{align*}
 PV &= \frac{1 + Y + \sqrt{Y^2 - Y^2}}{(1-Y)} \cdot \frac{a}{RT(V + b)} \\
 a &= a_x \cdot \exp(a_Y \cdot T + a_T \cdot T^3) \\
 b &= b_x + b_Y \cdot T + b_T \cdot T^3 \\
 a_x &= \sum_{i=1}^{n} x_i \cdot a_{ij} \\
 b_x &= \sum_{i=1}^{n} x_i \cdot b_{ij} \\
 a_{ij} &= (1 - f_{ij}) \cdot \sqrt{a_i \cdot a_j} \\
 f_{ij} &= \text{نیز، مدل‌های بررسی کرده‌اند. آزمایش‌های آنها نشان می‌دهد که مدل‌های مدل‌های مدل‌های MT

\begin{align*}
 PV &= \frac{1 + Y + \sqrt{Y^2 - Y^2}}{(1-Y)} \cdot \frac{a}{RT(V + b)} \\
 a &= a_x \cdot \exp(a_Y \cdot T + a_T \cdot T^3) \\
 b &= b_x + b_Y \cdot T + b_T \cdot T^3 \\
 a_x &= \sum_{i=1}^{n} x_i \cdot a_{ij} \\
 b_x &= \sum_{i=1}^{n} x_i \cdot b_{ij} \\
 a_{ij} &= (1 - f_{ij}) \cdot \sqrt{a_i \cdot a_j} \\
 f_{ij} &= \text{نیز، مدل‌های بررسی کرده‌اند. آزمایش‌های آنها نشان می‌دهد که مدل‌های MT

\begin{align*}
 PV &= \frac{1 + Y + \sqrt{Y^2 - Y^2}}{(1-Y)} \cdot \frac{a}{RT(V + b)} \\
 a &= a_x \cdot \exp(a_Y \cdot T + a_T \cdot T^3) \\
 b &= b_x + b_Y \cdot T + b_T \cdot T^3 \\
 a_x &= \sum_{i=1}^{n} x_i \cdot a_{ij} \\
 b_x &= \sum_{i=1}^{n} x_i \cdot b_{ij} \\
 a_{ij} &= (1 - f_{ij}) \cdot \sqrt{a_i \cdot a_j} \\
 f_{ij} &= \text{نیز، مدل‌های بررسی کرده‌اند. آزمایش‌های آنها نشان می‌دهد که مدل‌های MT

\begin{align*}
 PV &= \frac{1 + Y + \sqrt{Y^2 - Y^2}}{(1-Y)} \cdot \frac{a}{RT(V + b)} \\
 a &= a_x \cdot \exp(a_Y \cdot T + a_T \cdot T^3) \\
 b &= b_x + b_Y \cdot T + b_T \cdot T^3 \\
 a_x &= \sum_{i=1}^{n} x_i \cdot a_{ij} \\
 b_x &= \sum_{i=1}^{n} x_i \cdot b_{ij} \\
 a_{ij} &= (1 - f_{ij}) \cdot \sqrt{a_i \cdot a_j} \\
 f_{ij} &= \text{نیز، مدل‌های بررسی کرده‌اند. آزمایش‌های آنها نشان می‌دهد که MT

\begin{align*}
 PV &= \frac{1 + Y + \sqrt{Y^2 - Y^2}}{(1-Y)} \cdot \frac{a}{RT(V + b)} \\
 a &= a_x \cdot \exp(a_Y \cdot T + a_T \cdot T^3) \\
 b &= b_x + b_Y \cdot T + b_T \cdot T^3 \\
 a_x &= \sum_{i=1}^{n} x_i \cdot a_{ij} \\
 b_x &= \sum_{i=1}^{n} x_i \cdot b_{ij} \\
 a_{ij} &= (1 - f_{ij}) \cdot \sqrt{a_i \cdot a_j} \\
 f_{ij} &= \text{نیز، مدل‌های بررسی کرده‌اند. آزمایش‌های آنها نشان می‌دهد که MT}
اویپرایتور هستند. چون کمپرسور نمی تواند با سیال دو فازی کار کند، با قرار دادن یک مدل حرفه ای در خط مشک کمپرسور، احتیاط ورود سیال دو فازی به کمپرسور از بین می رود. اویپرایتور و UA کندانسور مبدل‌های حرارتی جریان مخلوطی هستند که مقدار حرارتی و مقدار مخلوطی است. یک مدل فیزیکی ماده را حساب کرد که بررسی محاسبه خون مخلوطی ترموذینامیکی 27 نوع مبرد خالص و مخلوط آنها توسط مؤسسه ملی استاندارد و تکنولوژی امریکا (NIST) به صورت یک نرم افزار کامپیوتری تهیه شده است. یک نرم افزار تحت عنوان REFFPROP در سال 1991 تکمیل شده است که در این نرم افزار به صورت پردازه به زبان فشرن 77 نوشته شده است. جون خروجی این نرم افزار به صورت جداول ترموذینامیک است، نمی توان از این نرم افزار به صورت خام در پردازه‌های کامپیوتری دیگر استفاده کرد. این نرم افزار، به ورود به داده‌های آن، طوری تغییر یافته که به صورت یک پردازه می تواند در پردازه‌های دیگر مورد استفاده قرار گیرد. کل نرم افزار اصلاح شده به صورت REFF به عنوان INTEGRIST ویرایش و به عنوان REFF به عنوان INTEGRIST است. در این نرم افزار به صورت خود فرآیند فیزیکی تعیین می شود و پاسخ به دست آمده است. داده‌های مربوط به مصرف شرکت REFF و فیزیکی در این نرم افزار داده‌ها 27 نوع مربوط به این نرم افزار مورد استفاده است. زیر پردازش REFF در این نرم افزار خود مشخص می‌شود و در این نرم افزار خود مربوط به حساب می‌کند. مثال با داشتن دما و فشار می‌توان دقیق خواص مثل انتقالات، انتروپی، گرمای و ... را به دست آورد. خواص مستقل ورودی به REFF و فشار و ... در صورت انتزینوفی - فشار و ... به دست می‌آید. همچنین می‌توان خواص اشباع را با دادن شرایط حساب کرد.

4- شیب سطح سیال تبیرد
منظر از شیب سطحی یک سیستم حرارتی بین فرازدهای انجام گرفته در آن به صورت روابط ریاضی است. در جزء سیستم به صورت یک پارامتر ریاضی مدل می‌شود. سپس با حل همزمان این معادلات، سemuکد سیستمی می‌گردد. شکل (1) یک مدلکی برای کاهش در پذیرش خانگی به کار می‌رود. نشان می‌دهد.

چهار جزء اصلی سیستم کمپرسوری کندانسورب، شیر انبساط و

استنل سال 12، شماره 1، شهریور 1374

34
شکل 1- سیکل تیرید تراکمی یخچال

پرای کمپرسور رادرمجر " و جانگ" [17] فقط یک راندمان
ایزوترمیک معلوم و ثابت فرض کرده و ادعا کرده‌اند که دما‌ی
مرد در ورود به کمپرسور تقریباً برابر با دما محسوب است. با این
فرضیات، دو معنی مستقل یا ترکیبی که باید برای طراحی
شونده معادلات (8) و (9) هستند، بیشتر توسط توزیع معادلات
ارائه شده برای دو مدل تغییر است. در مدل آنها، انتظار کمپرسور
نیست. پرای آنها عمدتاً سیستم با میوههای مختلف واقعی
بله باشد. مدل زیر برای
کمپرسور واقعی در نظر گرفته شد است:

\[\dot{W}_{\text{comp}} = \frac{n}{n-1} P_r V_r \left(\frac{P_n}{P_r} \right)^{\frac{n-1}{n}} \] \hspace{1cm} (20)

\[\dot{m}_r = \frac{n r}{V_r} \] \hspace{1cm} (21)

که \(n \) ضریب پلی تروپیک بوده و با تقیین خورش می‌توان
نوشت[12]

\[n \equiv \frac{k_r + k_T}{\gamma} \times 0.95 \] \hspace{1cm} (22)

که جرمی و دما ورود ها به کنرادنویس و اواپراتور مقادیر
معلوماند.

\[P_\infty = P_{\text{sat}}(T_\infty) = P_r = P_\gamma = P_\sigma = P_\sigma \] \hspace{1cm} (16)

قسمتهای دو فازی، فروسرد و ویاگرم در کنرادنویس و اواپراتور به
طور جداگانه در نظر گرفته می‌شوند و اختلاف دمای متوسط
لگاریتمی برای این دو جهت به صورت زیر محاسبه می‌گردد:

\[(\text{LMTD})_E = f_{\text{tp}},E \times (\text{LMTD})_{tp},E \]

\[+ f_{\text{sph}},E \times (\text{LMTD})_{\text{sph}},E \] \hspace{1cm} (17)

\[(\text{LMTD})_C = f_{\text{sc}},C \times (\text{LMTD})_{\text{sc}},C \]

\[+ f_{\text{tp}},C \times (\text{LMTD})_{\text{tp}},C \times (\text{LMTD})_{\text{sph}},C \] \hspace{1cm} (18)

که ۰ نشانه‌دهنده کسر انتقال گرمایی در یک ناحیه مشخص است. مثلاً
کسری از انتقال گرمایی در کنرادنویس است که در ناحیه دو فازی
رخ می‌دهد، به‌طور

\[f_{\text{tp}},C = \frac{h_r - h_\infty}{h_r - h_\infty} = \frac{1}{f_{\text{sc}},C \times f_{\text{sph}},C} \] \hspace{1cm} (19)

استلال، سال 14، شماره 1، شهريور 1376

35
نظریه‌ی حجم مورد کمپرسور، یک مقدار معمولی است و به هندسه کمپرسور بستگی دارد. در این حالت، دو اصطلاح ثابت هر یک با یک چرخ شوند,

\[
Re^+ = \frac{m_r (h_r - h_g)}{(UA)_C (LMTD)_C}
\]

\[
Re^+ = \frac{m_r (h_1 - h_g)}{(UA)_E (LMTD)_E}
\]

\[
Re^+ = \frac{m_r (h_r - h_f) - W_{comp}}{Q_E}
\]

\[
C = \frac{1}{3}
\]

با قرار دادن مقدار این چهارمحله، چهار مجدول مستقل 17 - 18 مدل شد. سپس میانگین‌ها دیگر سیگلاز از مدل‌های (17) و مدل‌های حاصل قابل محاسبه خواهند بود. مدل‌سازی‌ها خظی (27 - 28، 29) با روش‌نیوتبس - رافسون و حل مدل سیوند. برنامه کامپیوتری که می‌تواند به همراه اصلاح شده، عملکرد سیگلاز را تحت شرایط کارکرد مختلف و میزان گوناگون محاسبه کند [19] در مدلی که به نهایی، هندسه مستقیم در کمپرسور وارد شد. یک مدل دیفرانسیل این که ابعاد مدل‌های حرارتی و لوله‌ای می‌باشد (پانیردیسمات) نیز معلوم و ثابت باشد. برای این کار با یک اطلاعات دقیق در مورد مکانیک سلبال و انتقال گرمایی به این وسایل داشته‌باشیم. در مرجع (19) یک پیش‌بینی با مدل خالصه نکته‌ی اولویت و کاندهای آن با چارکی اجرا می‌کند و ابعاد تمام قطعات و جرم مورد موجود در آن معلوم و ثابت بود، مدلی می‌سازد. بررسی نظری و آزمایشی اواپراتور و کنترل‌سوزهایی که با جریان تطبیقی هواکار می‌کنند و
شکل 2- ضریب عملکرد سیکل باری مخلوط‌های R_{32}/R_{142b} و R_{32}/R_{152a} بر حسب غلتک R_{32}/R_{152a}

شکل 3- نسبت فشار کمپرسور باری مخلوط‌های R_{32}/R_{142b} و R_{32}/R_{152a} بر حسب غلتک R_{32}/R_{152a}

شکل 4- تغییر دمای مندر در اواپراتور باری مخلوط‌های R_{32}/R_{152a} و R_{32}/R_{142b} بر حسب غلتک R_{32}/R_{152a}

شکل 5- تغییر دمای مندر در اواپراتور باری مخلوط‌های R_{32}/R_{142b} و R_{32}/R_{152a} بر حسب غلتک R_{32}/R_{152a}
جدول 1- ضریب عملکرد ظرفیت حجمی و نسبت نشار سیکل برای مبردهای مختلف با کمپرسور اویترپریک

<table>
<thead>
<tr>
<th>مبرد</th>
<th>ضریب عملکرد</th>
<th>ظرفیت حجمی Nیتکش (l/m²)</th>
<th>COP</th>
</tr>
</thead>
<tbody>
<tr>
<td>R12</td>
<td>1/741</td>
<td>735/5</td>
<td>2/2/29</td>
</tr>
<tr>
<td>R134a</td>
<td>2/944</td>
<td>1766/0</td>
<td>2/0/29</td>
</tr>
<tr>
<td>R152a</td>
<td>3/233</td>
<td>20/1/1</td>
<td>2/1/11</td>
</tr>
<tr>
<td>R12</td>
<td>3/461</td>
<td>378/9</td>
<td>2/1/19</td>
</tr>
<tr>
<td>R152a</td>
<td>3/235</td>
<td>149/9</td>
<td>1/9/07</td>
</tr>
<tr>
<td>R12</td>
<td>3/461</td>
<td>578/5</td>
<td>2/1/18</td>
</tr>
<tr>
<td>R152a</td>
<td>3/235</td>
<td>768/5</td>
<td>2/1/18</td>
</tr>
<tr>
<td>R12</td>
<td>3/461</td>
<td>578/5</td>
<td>2/1/18</td>
</tr>
<tr>
<td>R152a</td>
<td>3/235</td>
<td>997/4</td>
<td>2/1/18</td>
</tr>
</tbody>
</table>

با یکسان‌داشتن تغییرات می‌توانیم مراحل ناتمامی است که متفاوت‌اند. مبردهای مختلف با کمپرسور اویترپریک مانند کاراکترهای 1/2 برای R32/142b، کاراکترهای خوبی دارند. نسبت بارک‌های کمپرسور در می‌تواند در محدوده به 12 رات و افزایش محصول در ضریب عملکرد 1-5 و ظرفیت حجمی Nیتکش باشد. در محدوده به 12 رات و 1375 و مخاطب کننده خوبی برای R12 باشد. در خانم های رنگ به ذکر است که در این پژوهش صرف آوری خواستان کم‌ترد. همگی و مدل‌ها، H

10. "تأثیر نوع سیال بر عملکرد ترمودینامیک سیکلهای تبید" پایان نامه کارشناسی ارشد، دانشگاه دانشگاه صنعتی اصفهان، پاییز 1373.

