Search published articles


Showing 2 results for Davoodi

M. K. Jafari, M. Davoodi and M. Razzaghi,
Volume 22, Issue 1 (7-2003)
Abstract

There is a worldwide interest in the proper design of embankment dams to resist earthquake loadings. For the first time in Iran, a complete ambient vibration survey due to low-level loads such as wind, machinery activities, low level tectonic activities, and water exit from bottom outlet was performed on Marun embankment dam. These kinds of ambient vibration tests are suitable for manifesting the lower vibration modes of the dam body. Using different signal processing methods such as Power Spectra Density, the results of in-situ tests have been used to evaluate the natural frequencies, mode shapes and modal damping of the dam body. Besides ambient vibration tests, the 3-D modal analysis of the dam body was performed using ANSYS software. The foundation and abutment flexibility effects on dynamic characteristics of the dam body was investigated and the dynamic soil properties were used from Engineer’s report and some empirical relations. Also initial shear modulus of the dam body and foundation materials were evaluated by refraction survey. In this paper, the test procedures, related signal processing results, numerical analysis results and its comparison with the dynamic characteristics of the dam body obtained from the full-scale dynamic tests will be presented. Finally, calibrating procedures of the numerical model (based on increasing the accuracy of dam body geometry, soil and rock material parameters and foundation and abutment flexibility) will be discussed. Keywords: Embankment Dam, Dynamic Characteristics, Ambient Vibration Test, Modal Analysis
N. Davoodi, J. Moradloo,
Volume 34, Issue 1 (7-2015)
Abstract

In this research, nonlinear dynamic analysis of concrete shear wall using a new nonlinear model based on damage mechanics approach and considering bond slip effects is presented. Nonlinear behavior of concrete is modeled by a rotational smeared crack model using damage mechanics approach. The proposed model considers major characteristics of the concrete subjected to two and three dimensional loading conditions. These characteristics are pre-softening behavior, softening initiation criteria and fracture energy conservation. The model was used in current research analysis after verification by some available numerical tests. Reinforcements are modeled by a bilinear relationship using two models: Discrete truss steel element and Smeared model. In Discrete model the effects of bond-slide between concrete and rebar is mentioned using the bond-link element model concept. Based on the presented algorithms and methodology, an FEM code is developed in FORTRAN. The validity of the proposed models and numerical algorithms has been checked using the available experimental results. Finally, numerical simulation of CAMUS I and CAMUS III reinforced concrete shear walls is carried out. Comparisons of deduced results confirm the validity of proposed models. The obtained results, both in the expected displacements and crack profiles for the walls, show a good accuracy with respect to the experimental results. Also, using discrete truss element model with respect to the smeared steel model leads to increasing the accuracy of maximum displacement response to 7% in analysis.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb