Search published articles


Showing 3 results for Heidari

A.heidari, B. Saghfian and R. Maknoon,
Volume 23, Issue 2 (1-2005)
Abstract

Flood hydrograph simulation is affected by uncertainty in Rainfall – Runoff )RR( parameters. Uncertainty of RR parameters in Gharasoo catchment, part of the great Karkheh river basin, is evaluated by Monte–Carlo (MC) approach. A conceptual-distributed model, called ModClark, was used for basin simulation, in which the basin’s hydrograph was determined using the superposition of runoff generated by individual cells dividing the catchment in a raster–based discretization. A narrow parameter range was obtained through application of the MC method. Parameter range depended on goodness of fit measures. The results of various goodness-of-fit measures are discussed in this paper. The selected goodness-of-fit measures gave high weight to peak discharge to reduce peak discharge error.
M. R. Heidari, M. R. Soltani, M. Taeibi-Rahni, and M. Farahani,
Volume 24, Issue 2 (1-2006)
Abstract

A series of supersonic wind tunnel tests on an ogive-cylinder body were performed to investigate the pressure distribution, the boundary layer profiles, and the flow visualization at various angles of attack. All tests were conducted in the trisonic wind tunnel of the Imam Hossein University. The theoretical shock angle at different model positions compared well with those we obtained via Schilerian results. The static surface pressure results show that the circumferential pressure at different nose sections vary significantly with angle of attack. However, minor changes in the circumferential pressure signatures along the cylindrical part of the body were observed. The total pressure measurements in the radial direction, perpendicular to the incoming flow, vary significantly both radially and longitudinally (along body length). The boundary layer thickness increases along the body. At the beginnig and at the midle part of the cylinderical portion of the body, the boundary layer thickness increases uniformly with increasing angle of attack. However, this situation differs near the end of the body. Our measurements indicated a turbulent boundary layer along the model, which is probably due to the high turbulence level in the tunnel test section.
P. Gilavand, H. R. Heidari,
Volume 40, Issue 2 (1-2022)
Abstract

In this paper, the effect of water- iron oxide (Fe3O4) nanofluid on a channel heat transfer in the presence of perpendicular to the flow variable magnetic field with creating axial obstacles using a mixed single-phasee model is investigated numerically. The effects of magnetic field are added to governing equations of ferrofluid by writing codes and the problem geometry is generated and networked in Gambit 2.4 software. The network used is constructed in a three-dimensional and the governing non-linear differential equations are solved according to the finite volume method by using the Fluent software. Also, the effect of parameters such as obstacles in the flow path, dimensionless number of magnetic field intensity and Reynolds dimensionless number on heat transfer have been studied. The results show that creating obstacles in the flow path causes turbulence in the fluid flow, which increases the overall heat transfer. Also, the application of a magnetic field on the magnetic nanofluid causes the penetration of the cool boundary layer in the central parts of the channel and with increasing the intensity of the magnetic field, the penetration of this layer increases. As a result, the amount of Nusselt number and heat transfer has increased, and this improvement in heat transfer and Nusselt number increases with increasing Reynolds number.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb