Search published articles


Showing 6 results for Mirzaei

B. Mirzaeian, M. Moallem, V. Tahani and Caro Lucas,
Volume 20, Issue 1 (7-2001)
Abstract

In this paper, a new method based on genetic-fuzzy algorithm for multi-objective optimization is proposed. This method is successfully applied to several multi-objective optimization problems. Two examples are presented: the first example is the optimization of two nonlinear mathematical functions and the second one is the design of PI controller for control of an induction motor drive supplied by Current-Source-Inverter (CSI). Step response of the system is considered and controller parameters are designed based on multi-objective optimization technique. Rise-time, maximum over-shoot, settling time and steady state error are considered as objective functions. The simulation results of the new method for induction motor speed control and optimization of two nonlinear mathematical functions are compared with the results obtained from other methods [4,14,15], which shows better performance.
S. Mirzaei, M. Saghaein - Nejad, V. Tahani and M. Moallem,
Volume 20, Issue 2 (4-2001)
Abstract

This paper introduces a novel passive suspension system for ground vehicles. This system is based on a flexible Electromagnetic Shock Absorber (EMSA). In the proposed system, efforts are made to a) select a high damping coefficient usable in a car b) determine Physical dimensions and geometry not much different from those of the mechanical shock absorbers and c) seletct EMSA weight and volume low enough for the core not to be saturated. A model is designed and developed followed by determining the dynamic equations for the model. The results from the simulation in a quarter car model are then compared with those from passive and active suspension systems. Keywords: Active Suspension Systems, Electromagnetic damper, Finite Element method
S. Mirzaei , J. Akbari,
Volume 35, Issue 2 (2-2017)
Abstract

For solving the dynamic equilibrium equation of structures, several second-order numerical methods have so far
been proposed. In these algorithms, conditional stability, period elongation, amplitude error, appearance of spurious frequencies
and dependency of the algorithms to the time steps are the crucial problems. Among the numerical methods, Newmark average
acceleration algorithm, regardless of existence of spurious frequencies, is very popular in the structural dynamics due to its
unconditionally stability status of the method. Recently, several first-order methods have been introduced for resolving the
accuracy and stability issues. However, in these methods stability, accuracy and error in inversion of the state matrix are known
as major issues. When the state matrix became singular or ill conditioned, numerical errors will occure in the computational
process. Many of the available first-order methods were to improve the stability and accuracy and also to remove the error of
inversion. Even though the introduced methods are conditionally stable, no investigation on errors, occuring during dynamic
loading, has been reported for them. The main purpose of this paper is to utilize a specific decomposition method based on
Singular Value Decomposition (SVD) for modifying PIM algorithm. Using the SVD inversion technique, the singularity problem
of the state matrix has been resolved. In this paper, the modified method is called PIMS. As well, by applying the developed
method for dynamic loading, the error of responses has been investigated. The results show that PIMS algorithm is stable and,
comparing with secoend order Newmark and other available first order methods, has more accuracy.


M. Mohammadimehr, S. Alimirzaei,
Volume 36, Issue 2 (3-2018)
Abstract

In this research, the nonlinear buckling analysis of Functionally Graded (FG) nano-composite beam reinforced by various distributions of Boron Nitrid Nanotube (BNNT) is investigated under electro-thermodynamical loading with considering initial geometrical imperfection. The analysis is performed based on nonlocal elasticity theory and using the Finite Element Method (FEM). Various distributions of BNNT along the beam’s thickness are considered as uniform and decreasing-increasing functionally graded; and the extended mixture model is used to estimate the properties of nano-composite beam. The elastic medium around the smart nano-composite beam is modeled as elastic foundation. The governing equations of equilibrium are derived using energy method and nonlocal elasticity theory; and the critical buckling load is obtained for various boundary conditions such as simply-simply supported (S-S) and clamped-clamped (C-C) using the FEM. The results indicate that with an increase in the geometrical imperfection parameter, the stiffness of nano-composite beam increases and consequently the stability of the system increases. The effect of FG-X distribution type is more than uniform distributions. Also, the critical buckling load of nano-composite beam increases with an increase in the electric field and elastic foundation.

A. Noghrehabadi, R. Mirzaei, M. Ghalambaz,
Volume 38, Issue 1 (8-2019)
Abstract

The behavior of many types of fluids can be simulated using differential equations. There are many approaches to solve differential equations, including analytical and numerical methods. However, solving an ill-posed high-order differential equation is still a major challenge. Generally, the governing differential equations of a viscoelastic nanofluid are ill-posed; hence, their solution is a challenging task. In addition, the presence of very tiny nanoparticles (lower than 100 nm) induces new heat and mass transfer mechanisms which can increase the complexity of the behavior of the viscoelastic nanofluids. Therefore, creating or developing new analytical or semi-analytical approaches to solve the governing equations of these types of nanofluids is highly demanded. In the present study, by using a new idea and utilizing an optimization approach, a new solution approach has been presented to solve the governing equations of viscoelastic nanofluids. By using the optimization method, a basic initial guess was changed toward an optimized solution satisfying all boundary conditions and the governing equations. The results indicate the robustness and accuracy of the presented method in dealing with the high-order ill-posed governing differential equations of viscoelastic nanofluids.
Z. Z. Ahangari Sisi, M. Mirzaei, S. Rafatnia, B. Alizadeh,
Volume 39, Issue 2 (2-2021)
Abstract

Active vehicle suspension system is designed to increase the ride comfort and road holding of vehicles. Due to limitations in the external force produced by actuator, the design problem encounters the constraint on the control input. In this paper, a novel nonlinear controller with the input constraint is designed for the active suspension system. In the proposed method, at first, a constrained multi-objective optimization problem is defined. In this problem, a performance index is defined as a weighted combination of the predicted responses of the nonlinear suspension system and control input. Then, this problem is solved by the modified firefly optimization algorithm to find the constrained optimal control input. To evaluate the performance of the proposed method, the results of the unconstrained and constrained controllers are provided and discussed for various road excitations. The results show a remarkable increase in the ride comfort with the limited force, while other suspension outputs including the suspension travel and tire deflection being in the acceptable ranges. In addition, these controllers are compared with Sliding Mode Control (SMC) and Nonlinear Model Predictive Control (NMPC) in the presence of model uncertainty.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb