Search published articles


Showing 2 results for Niazi

Seyyed Jalal Hemmati, M.a. Niazi, M. Maarefat, and R. Naghdabadi,
Volume 24, Issue 2 (1-2006)
Abstract

Flame bending process is one of the forming processes of steel plates. During this process, plate is formed with heating by gas torch flame followed by controlled cooling along specified paths. Considering simple tools used in the process, it is a popular and economical forming method. At present, this process is manually done on the basis of skilled technician’s experience. Experimental and non-automated procedures decrease productivity of the process. In this paper, a method is proposed for simulation of material deformation. Regarding the physics of the process, large deformation thermoelastic-plastic analysis has been applied. In the simulations, a new analytical solution is used for thermal analysis of plate. The analytical solution along with finite element analysis of the deformation in ANSYS program is able to interpret experimental observations. The simulations show reasonable results, compared with the analytical results by other researchers and with experimental data. The method and simulation results can be used to study the process automation
A. R. Rahmati, S. Niazi,
Volume 34, Issue 1 (7-2015)
Abstract

In this study, for the first time, a comparison of single-relaxation-time, multi-relaxation-time and entropic lattice Boltzmann methods on non-uniform meshes is performed and application of these methods for simulation of two-dimensional cavity flows, channel flows and channel flows with sudden expansion is studied in the slip and near transition regimes. In this work, Taylor series expansion and least squares based lattice Boltzmann method is utilized in order to apply the lattice Boltzmann models on non-uniform meshes. A diffuse scattering boundary condition and a combination of bounce-back and specular boundary conditions are employed to obtain the slip at the walls. Besides, the relaxation times of lattice Boltzmann methods are computed in terms of Knudsen number. Different lattice Boltzmann methods are used to simulate lid-driven micro cavity flows and their results are compared with each other and with those obtained in the literature. Then, the best model in accuracy and stability, i.e. multi-relaxation-time lattice Boltzmann method, is applied to simulate the micro channel flow in different Knudsen numbers. Results show that the proposed method on non-uniform meshes is capable of simulating micro flows problems in the slip and the transition regimes.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb