Search published articles


Showing 12 results for Rahimi

Saatchi, A. Najafi- Zadeh, M. R. Rahimipour,
Volume 14, Issue 1 (1-1994)
Abstract


M. H. Rahimian and M. Farshchi,
Volume 16, Issue 2 (1-1998)
Abstract

The objective of this research is to develop an accurate numerical method to be used in showing the deformation of a liquid fuel droplet in a convective field. To simultaneously solve the internal liquid droplet flow field as well as the external gas phase flow field, a nonstaggered rectangular grid system without any coordinate transformation is used. Transition from the gas field to the liquid field is performed through consistent balancing of kinematic and dynamic conditions at the liquid-gas interface. An implicit fractional step-type method is used to capture pressure and velocity field with proper coupling at low Mach number limit. To show the accuracy of the method, the solution of the driven cavity flow and flow over a solid cylinder is presented. Next, two phase flow field solution of moving and deforming droplet in a gaseous surrounding, with appropriate surface tracking, is presented. While gas Reynolds number and Weber number are shown to play an important role in droplet deformation, liquid Reynolds number and density ratio have no significant effect.
M. H. Rahimian and M. Farshchi,
Volume 21, Issue 1 (7-2002)
Abstract

The internal flow circulation dynamics of a liquid drop moving in a co- or counter-flowing gas stream has been numerically studied. The present work is concerned with the time accurate numerical solution of the two phase flow field at the low Mach number limit with an appropriate volume tracking method to capture motion and deformation of a liquid drop. It is shown that relative velocity between gas and liquid and the parameters controlling the deformation of the drop have the strongest influence on its internal circulation, too. The effects of the liquid Weber number, ranging from 8 to 32, and of gas stream Reynolds number, ranging from 1 to 20 are studied. It was revealed that the largest and the most lasting internal circulation are observed in drops with small deformation in high Reynolds number gas streams. In the case of counter-flowing gas stream, there is a strong internal circulation inside the liquid drop. The locations of the gas separation points on the drop are strongly influenced by the internal circulation of the drop, resulting in a complex wake dynamics. Keywords: Numerical solution, Two phase flow, Moving droplet, Droplet internal circulation
B. Saghafian, S. Rahimi Bandarabadi, H. Taheri Shahraeeni and J. Ghayoomian,
Volume 24, Issue 1 (7-2005)
Abstract

Rainfall is one of the most important climatic variables in the hydrology cycle. In flood estimation as well as environmental pollution studies in medium to large watersheds not only mus temporal pattern of rainfall t be known, but also the knowledge of its spatial distribution is required. Estimation of daily rainfall distribution without comparison and selection of suitable methods may lead to errors in input parameters of rainfall – runoff models. Interpolation methods are among the techniques for estimating spatial distribution of rainfall. In this study, Thin Plate Smoothing Splines (TPSS), Weighted Moving Average (WMA) and Kriging are applied to estimate spatial daily rainfall in the southwest of Iran. Cross validation technique is used for comparison and evaluation of the methods. The results of analysis with two different station density showed that the TPSS method with power of 2 is the most accurate method in estimating daily rainfall. Zoning of the region also increased the interpolation accuracy. Generally speaking, division of the region based on cluster analysis improves accuracy compared with division by inter basin boundaries
M. Ebrahimi and A. Ghaderi,
Volume 24, Issue 2 (1-2006)
Abstract

Stator flux oriented vector control of induction motor (IM) drives for speed sensorless control has several advantages. But the application of a pure integrator for the flux estimation is difficult due to the presence of measurement noise and dc offset. To overcome these problems, some have used a programmable cascaded low pass filter (PCLPF). In this paper, it is shown that some problems still exist and some new problems arise from this approach. In order to solve these problems, a novel compensation method is proposed. In this scheme, the dc offset is detected and subtracted from the estimated flux along d and q axes. The simulation results show that it works well in the low speed region as well as in the transient state. The oscillation of the torque and the estimated flux are also reduced notably when the torque reference changes rapidly.
A. Ebrahimi, S. A.a. Mousavian, and M. Mirshams,
Volume 24, Issue 2 (1-2006)
Abstract

The rapid growth of space utilization requires extensive construction, and maintenance of space structures and satellites in orbit. This will, in turn, substantiate application of robotic systems in space. In this paper, a near-minimum-time optimal control law is developed for a rigid space platform with flexible links during an orientating maneuver with large angle of rotation. The time optimal control solution for the rigid-body mode is obtained as a bang-bang function and applied to the flexible system after smoothening the control inputs to avoid stimulation of the flexible modes. This will also reflect practical limitations in exerting bang-bang actuator forces/torques, due to delays and non-zero time constants of existing actuation elements. The smoothness of the input command is obtained by reshaping its profile based on consideration of additional first-order and second-order derivative constraints. The platform is modeled as a linear undamped elastic system that yields an appropriate model for the analysis of planar rotational maneuvers. The developed control law is applied on a given satellite during a slewing maneuver. The simulation results show that the modified realistic optimal input compared to the bang-bang solution agrees well with the practical limitations and also alleviates the vibrating motion of the flexible appendage, which reveals the merits of the new control law developed here.
M. Ebrahimi, M. Moradiyan, H. Moeshginkelk, M. Danesh, and M. Bayat,
Volume 25, Issue 1 (7-2006)
Abstract

This paper presents a method based on neural networks to detect broken rotor bars and end rings in squirrel cage induction motors. In the first part, detection methods are reviewed and traditional methods of fault detection as well as dynamic model of induction motors are introduced using the winding function method. In this method, all stator and rotor bars are considered independently in order to check the performance of the motor for any faults in the parts. Then the frequency spectrum of current signals is derived using the Fourier transform and analyzed under various conditions. In the second part of the paper, an analytical discussion of the theoretical principles is presented to arrive at a simple algorithm for fault detection based on neural networks. The neural network has been trained using the information from a 1.1 KW induction motor. Finally, the system is tested with different values of load torque and is found capable of working on-line to detect all normal and ill-performing conditions.
M. R. Rahimi Pour and M. Moayeri, ,
Volume 25, Issue 1 (7-2006)
Abstract

The effective parameters that influence in situ cast ferroTic composites were investigated. Centrifugal casting of specimens was carried out using ceramic & metallic molds. OM, SEM and XRD techniques were used to examine the existence of flows in the specimens. Results show that the control of chemical composition, processing, cooling rate and heat treatment has a promising effect on the quality of specimens. Also remelting process leads to the hemogeneity of matrix by uniform distribution of secondary phase.
B.ebrahimian and M.vafaeian,
Volume 26, Issue 1 (7-2007)
Abstract

In spite of the fact that the effect of earthquake on earth dams has been widely studied during the past decades, the complicated behavior of such earth structures against different seismological characteristics is still unknown. Such ambiguities necessitate more accurate studies using more comprehensive computation tools to achieve new results describing the behavior of such structures subjected to earthquake loading. In the present study, the simple soil model of elastic, perfectly plastic (based on the Mohr-Coulomb criterion), and Rayleigh damping criterion have been adopted for the soil. First, the numerical model employed was verified by dynamic analysis of real cases such as “Long Valley” and “santa Felecia” earth dams. The computational results were then compared with real recorded data or with those reported by other researchers. In addition to evaluating seismic stability of earth dams, their seismic stability was verified using pseudo-static analyses. Therefore, the “Carsington” dam was analyzed to verify the results of pseudo-static analyses and to check the results of FLAC software in calculating the pseudo-static factor of safety. The values of calculated factors of safety in the present study are in good agreement with the published results in the literature. Furthermore, the failure behavior revealed in the analysis shows the ability of FLAC software in defining the failure surface. In the main part of the analyses, a parametric study was conducted for different selected conditions and specially the effect of dam height and the optimum size of crest width were investigated. The results are presented in relevant diagrams.
M. E. Golmakani, E. Rahimi,
Volume 36, Issue 1 (9-2017)
Abstract

In this study, nonlinear axisymmetric bending analysis of Functionally Graded Carbon Nanotube Reinforced Composite (FG-CNTRC) cylindrical shell is investigated. Four distribution types of carbon nanotubes along the thickness direction of shells are considered, including a uniform and three kinds of functionally graded distributions. The material properties of FG-CNTRC shells are determined according to the modified rule of mixture. The equilibrium equations are derived based on First-order Shear Deformation Shell Theory (FSDT) and nonlinear Donnell strains. The coupled nonlinear governing equations are solved by Dynamic Relaxation (DR) method combined with central finite difference technique for different combinations of simply supported and clamped boundary conditions. For this purpose, a FORTRAN computer program is provided to generate the numerical results. In order to verify the accuracy of the formulation and present method, the results are compared with those available in the literatures for ABAQUS finite element package, as well as a similar report for an isotropic function shell. The appropriate accordance of the results indicated the accuracy of employed numerical solution in the present study. Finally, a parametric study is carried out to study the effects of distribution of carbon nanotubes (CNTs), shell radius and width-to-thickness ratios, boundary conditions and volume fraction of CNTs on the deflection, stress and moment resultants in detail. The results show that with increase of CNTS volume fractions, the O and UD distributions have the most and the least decrease of deflection, respectively, in both clamped and simply supported boundary conditions.

Sh Rezaei, M Eskandari-Ghadi, M. Rahimian,
Volume 36, Issue 1 (9-2017)
Abstract

The acoustic wave velocity depends on elasticity and density at most materials, but because of anisotropy and especially piezoelectric coupling effect, the acoustic wave propagation at piezoelectric based crystalloacoustic materials, is an applied and challenging problem. In this paper, using modified Christoffel's equation based on group velocity concept, the effect of anisotropy and piezoelectric coupling at different wafers of lithium niobate crystalloacoustic (strong anisotropy) on acoustic wave velocity (semi-longitudinal, semi-vertical transverse wave and semi-horizontal transverse wave) is investigated, and validated by experimental data. Then, the acoustic wave velocity ranges that can be supported are determined. The result of this study can be essential at acoustic metamaterials design, Phononic crystal and piezoelectric based wave-guides.

A. Zamani Nouri, P. Ebrahimi,
Volume 38, Issue 2 (2-2020)
Abstract

With respect to the great application of pipes conveying fluid in civil engineering, presenting a mathematical model for their stability analysis is essential. For this purpose, a concrete pipe, reinforced by iron oxide (Fe2O3) nanoparticles, conveying fluid  is considered. The goal of this study is to investigate the structural stability to show the effects of the inside fluid and the nanoparticles. The structure was modeled by a cylindrical shell and using Reddy theory. To obtain the force induced by the inside fluid, the Navier-Stokes equation was used. To assume the effect of the nanoparticles in the pipe, the Mori-Tanaka model was utilized so that the effects of agglomeration of nanoparticles could be considered. Finally, by applying energy method and the Hamilton's principle, the governing equations were derived. For the stability analysis of the structure, differential quadrature method (DQM) was proposed and the effects of different parameters such as volume fraction of the nanoparticles and agglomeration of the nanoparticles inside fluid and geometrical parameters were investigated. The results showed that the existence of the nanoparticles as the reinforcement for the pipe led to the delay in the pipe instability.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb