Search published articles


Showing 2 results for Rashki

N. Safaeian Hamzeh Kolaei, M. Miri, M. Rashki,
Volume 35, Issue 2 (2-2017)
Abstract

Weighted Simulation-based Design Method (WSDM) is recently developed as an efficient method for Reliability-
Based Design Optimization (RBDO). Despite simplicity, this method degrades effectiveness to obtain accurate optimum design for
high dimension RBDO. Besides, its application range is restricted to RBDOs including only random design variables. In the
present study, local search strategy is employed to enhance the accuracy of conventional WSDOM, and to reduce the computational cost. Besides, a shifting strategy is proposed to increase the application range of WSDM for handling general RBDO problems. The efficiency of the proposed methods is investigated by solving some structural reliability problems.
Comparisonof the obtained results with exact solutions confirms accuracy and superiority of the proposed method for
solving various engineering problems.


N. Cheraghi, M. Miri, M. Rashki,
Volume 39, Issue 1 (8-2020)
Abstract

This paper presents a probabilistic assessment on the free vibration analysis of functionally graded material plates, including layers with magneto-electro-elastic properties, using the 3D solution and surrogate models. The plate is located on an elastic foundation and the intra-layer slipping effect is also considered in the analysis by employing the generalized intra-layer spring model. Due to the high computational cost of the 3D solution in calculating the free vibration frequency of the plate, surrogate models are used. The meta models including kriging method, radial fundamental function method and polynomial response surface method are used to construct the surrogate model. For surrogate models training, the results of the three-dimensional solving method are used. The elastic foundation hardness, the intra-layer slipping effect, the material properties index, and the layer densities are considered as the variables with uncertainty. The three-dimensional solution method is validated through a comparison with other available reference. The results obtained through the surrogate models have been compared to those of the 3D solution formulation, showing a good agreement. The effects of some parameters including the elastic foundation hardness, the intra-layer slipping effect, the density of each layer, and the material properties index on the fundamental frequency of functionally graded material plates are investigated. By using three-dimensional solution method and Kriging Surrogate Model, it is shown that the shear and transverse components of elastic foundation hardness and the density of each layer have the greatest effect on the fundamental frequency of the functionally graded material plates.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb