Search published articles


Showing 3 results for Rezaee

M. Rezaee, F. Fallahi,
Volume 34, Issue 2 (1-2016)
Abstract

: The gear systems are widely used in industry to transmit the power or change the direction of the torque. Due to the extensive usage of the gears, the detailed designing and the subsequent maintenance of these systems are more and more evident. System recognition can be achieved through modeling the system, investigating the system behavior, and comparing the results obtained through the model with the actual system behavior. Up to now, the effect of dry friction has not been taken into account in nonlinear vibration analysis and modeling of a cracked one-stage gear power transmission system. In this paper, the nonlinear vibration of a pair of cracked spur-gear system in presence of dry friction, static transmission error, clearance and time-variant mesh stiffness is investigated. To this end, the time-variant mesh stiffness of an intact tooth is calculated analytically. Then, the tooth root crack is modeled as a cracked cantilever beam. The governing nonlinear equation of motion is extracted accordingly, and in order to consider the effect of dry friction, the governing equation solved by Rung- Kutta method in three separate time spans. Finally, the frequency response and bifurcation diagrams are used to study the effect of the friction and tooth root crack on the nonlinear vibration behavior of the system.


M. Rezaee, Sh. Amiri Jahed Amiri Jahed,
Volume 36, Issue 1 (9-2017)
Abstract

In the vibration of a cracked structure with small amplitude oscillations, the crack necessarily is not fully open or fully closed. Therefore, in order to provide a realistic model for the crack, one should relate the stiffness and damping at the crack location to the amount of the opening of the crack. In this study, a continuous model for vibration of a beam with a fatigue crack under low amplitude oscillations is presented in which the crack is not fully open or fully closed. By introducing a nonlinear model for the crack, the equation governing the vibration of the cracked beam is extracted. In order to consider the nonlinear behavior of the crack and to take into account the energy loss at the crack during the vibration, the bending moment at the crack location was considered as a nonlinear function of the angle of crack opening and its variations with respect to the time. The governing nonlinear equation is solved using the perturbation method. The solution reveals the dependency of the resonance frequency on the vibration amplitude. Analytical and explicit expressions are also derived for the nonlinear stiffness coefficient and the damping coefficient of the crack at the crack location. Finally, using the derived expressions for the crack parameters and experimental tests results for cracked beam, the nonlinear stiffness coefficient and the damping coefficient at the crack location is obtained.

M. Rezaee, M. M. Ettefagh, R. Fathi ,
Volume 39, Issue 1 (8-2020)
Abstract

Although the traditional automatic ball balancer (ABB) has numerous advantages, it has two major deficiencies, i.e., it has a limited balance stable region and it increases the vibration amplitude of the rotor at transient state. These deficiencies limit the applicability of ABBs. In this regard, a new type of ABB called “the Ball-spring autobalancer” has been proposed to resolve the mentioned deficiencies of the traditional ABBs. In order to investigate the capability of the Ball-spring AB in balancing rotors, it is necessary to study its dynamics accurately. The dynamics of a rotor with linear bearing equipped with a Ball-spring AB has been studied previously; however, in real situations, the bearings have nonlinear characteristics. Here, the dynamics of a rotor with nonlinear bearings equipped with a Ball-spring AB is investigated by the multiple scales method for the first time. The results show that the nonlinearity at the rotor bearings does not impair the advantages of the Ball-spring AB.
 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb