Search published articles


Showing 5 results for Safari

F.ghassemi and R.safari,
Volume 14, Issue 2 (1-1996)
Abstract

Distance relays are used to protect EHV and HV Transmission lines. Over the past decades many algorithms have emerged for digital distance relays. These are based on the calculation of the transmission line impedance from the relaying to fault points. In this paper a novel method for digital distance relaying is proposed. In the method the tracking procedure is implemented. The method uses the calculus of variations for optimization of functionals. The method tracks the fundamental component of the waveforms and at the same time calculates the fault loop impedance. This eliminates the need for a pre-algorithm filtering which in turn improves the speed of the relay. Comparison with other algorithms has shown that the proposed method has a faster response and improved accuracy, in particular when a long line is considered.
A, Saidi, M. H. Abbasi and J. Safarian,
Volume 19, Issue 1 (7-2000)
Abstract

Sponge iron (DRI) due to the high surface area, often shows a high tendency to re-oxidation and at some cases spontaneous combustion (autoignition). In this work, re-oxidation behavior and autoignition of sponge iron, produced from different types of iron ore has been investigated. Isothermal and non-isothermal re-oxidation experiments were carried out on each type of DRI and their autoignition temperature was determined. Microscopic examination and porosimetric measurements also were used to elucidate the relationship between the DRI specification and its re-oxidation behavior. The type and chemical analysis of the iron ore, used for the production of DRI, had a strong influence on the microstructure of sponge iron and, in turn, on its sensitivity to re-oxidation and autoignition.
J. Safarian-Dastjerdi and A. Saidi, ,
Volume 24, Issue 1 (7-2005)
Abstract

A higher bustle temperature in midrex direct reduction process is always desirable due to its positive effect on the productivity and DRI quality. The limit of the bustle temperature is related to the sticking or clustering behaviour of oxide pellets during the reduction in the reactor. It has been well estabilished that coating of oxide pellets by a refractory material decreases its tendency to clustering. In this study, the clustering behaviour of oxide pellets (produced from Golegohar-Chadormalu iron ore) during redution at different temperatures was investigated. The effect of coating with different amounts of hydrated lime on the clustering behaviour was also examined. Microscopic examination of coated pellets shows a porous, non-continious layer of Ca(OH)2 being fromed on the surface of the pellets. The clustering tendency of coated pellets, measured by the standard sticking test at pilot scale, was much lower, compared with normal (uncoated) pellets, while their reducibility was the same.
A. R. Safari, M. Ghayour, and A. Kabiri,
Volume 25, Issue 1 (7-2006)
Abstract

It is empirically established that, due to a number of factors involved, a classical (linear) analysis of buckling pressure is impossible. Nonlinear theories of buckling are, therefore, required that involve effective factors such as imperfections and welding effects. In this study, models are developed which are as close to allowable standard deviations as possible. In the next stage, their buckling behavior is investigated both experimentally and numerically using finite element packages ADINA, ANSYS, COSMOS, and MARC based on specific capabilities of each. Results show that reasonable estimates of real buckling pressure will become possible when material and geometrical nonlinearities and initial imperfections are introduced into the analytical system. Finally, in the light of the results obtained, a submarine pressure hull is analyzed.
M. Safari, M. Nili Ahmadabadi, A. Ghaei, E. Shirani,
Volume 34, Issue 1 (7-2015)
Abstract

In this research, a new method called elastic surface algorithm is presented for inverse design of 2-D airfoil in a viscous flow regime. In this method as an iterative one, airfoil walls are considered as flexible curved beams. The difference between the target and the current pressure distribution causes the flexible beams to deflect at each shape modification step. In modification shape algorithm, the finite element equations of two-node Timoshenko beam are solved to calculate the deflection of the beams. In order to validate the proposed method, various airfoils in subsonic and transonic regimes are studied, which show the robustness of the method in the viscous flow regime with separation and normal shock. Also, three design examples are presented here, which show the capability of the proposed method.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb