Search published articles


Showing 3 results for Ziaei-Rad

M. Mashayekhi, S. Ziaei-Rad, and J. Parvizian,
Volume 25, Issue 2 (1-2007)
Abstract

The continuum mechanic simulation of micro-structural damage process is important in the study of ductile fracture mechanics. In this paper, the continuum damage mechanics model formulation proposed by Lematire has been validated against ductile damage evolution experimentally measured in A533B-C1 steel under stress triaxiality conditions. First, a procedure to identify the model parameters from test was defined. Then, the finite element model was used to simulate the experiment carried out on a notched flat rectangular bar. Good agreement was observed between the experimental results and finite element predictions. Next, the identified parameters on A533B-C1 steel were used to simulate the results from a conventional tensile test by finite element method. The specimen was prepared according to ASTM E08 standard. The stresses at necking stage and ultimate load calculated by the damage based method were compared with those obtained from the test. The comparisons indicate a good agreement between the simulated and the experimental results.
A. Firouzian-Nejad, S. Ziaei-Rad, M. S Taki,
Volume 34, Issue 2 (1-2016)
Abstract

Having two stable configurations and no need to any permanent energy sources for remaining in each of these stable states, bi-stable composite plates have gained many applications. This paper has concentrated on control and dynamic response of cross ply bi-stable composite plates (0.90). To do this, using Hamilton principle , Rayleigh-Ritz method, and a MATLAB programme specifically designed for this study, have been applied in order to extract  the governing equation of motions in plates. Then, in order to control the large vibration of the cross ply bi-stable plate, a fuzzy controller was proposed using a fuzzy logic and its prformance was simulated by Simulink in Matlab environment. In order to simulate the real conditions on the controller performance, the effect of disturbances and time delay on the responses of controller were also investigated.


M. Jafari, M. Jamshidian, S. Ziaei-Rad,
Volume 37, Issue 2 (3-2019)
Abstract

The stored deformation energy in the dislocation structures in a polycrystalline metal can provide a sufficient  driving force to move grain boundaries during annealing. In this paper, a thermodynamically-consistent three-dimensional, finite-strain and dislocation density-based crystal viscoplasticity constitutive theory has been developed to describe the distribution of stored energy and dislocation density in a polycrystalline metal. The developed constitutive equations have been numerically implemented into the Abaqus finite element package via writing a user material subroutine. The simulations have been performed using both the simple Taylor model and the full micromechanical finite element model. The theory and its numerical implementation are then verified using the available data in literature regarding the physical experiments of the single crystal aluminum. As an application of the developed constitutive model, the relationship between the stored energy and the strain induced grain boundary migration in aluminum polycrystals has been investigated by the Taylor model and also, the full finite element model. The obtained numerical results indicated that the Taylor model could not precisely simulate the distribution of the stored deformation energy within the polycrystalline microstructure; consequently, the strain induced grain boundary migration.  This is due to the fact that the strain induced grain boundary migration in a plastically deformed polycrystalline microstructure is principally dependent on the spatial distribution of the stored deformation energy rather than the overall stored energy value.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb