Search published articles


Showing 159 results for Gh

M. Hassan Baziar, M. Rabeti Moghadam, , ,
Volume 34, Issue 1 (7-2015)
Abstract

In this paper,  a numerical model  was first verified against dynamic centrifuge tests results performed on an
underground subway tunnel and then, the effect of underground structure on peak ground acceleration (PGA) at the ground
surface investigated considering linear and nonlinear behavior for the soil. The results show that in the range of natural
frequency of the system, nonlinear model shows deamplification of PGA with respected to the freefield. Whereas, linear model
shows opposite trend. Out of the range of natural frequency of the system, linear and nonlinear models predict same results and for both model, underground tunnel resulted in amplification of  low frequencies and deamplification of high frequencies with
respected to the freefield.


G. Ghodrati Amir, A. Zare Hosseinzadeh,
Volume 34, Issue 1 (7-2015)
Abstract

In this paper, a new vibration-based damage detection method for damage localization in shear frames is presented. For this purpose, a new damage index is proposed by means of static displacements estimated using only the first several mode data and Grey Relation Theory. The efficiency of the presented method has been demonstrated through studying several damage scenarios on three examples of shear frames with a different number of stories. The effects of various situations such as the existence random noises in the recorded data, number of available modes, different damage scenarios and irregularity in the structural characteristics have been studied on the applicability of the presented method. The obtained results show the robustness and good performance of the presented method in the damage diagnosis of shear frames. Some of the most important advantages of the suggested method can be summarized as its ability in damage localization by means of only the first mode data, low sensitivity to the random noises, and high speed and accuracy in estimating damage locations.


E. Yari , H. Ghassemi,
Volume 34, Issue 2 (1-2016)
Abstract

The main objective of this paper is to provide an applied algorithm for analyzing propeller-shaft vibrations in marine vessels. Firstly an underwater marine vehicle has been analyzed at different speed in unsteady condition using the finite volume method. Based on the results of this analysis, flow field of marine vehicle (wake of stern) and velocity inlet to the marine propeller  is extracted at different times. Propeller inlet flow field is applied in the boundary element code and using this code, marine propeller has been analyzed in unsteady state. In continue, main / lateral forces and moments over the propeller are extracted. Then the data obtained from the boundary element code alongwith exact geometry of the propeller and shaft have been studied, using finite element code. Natural and forced frequency of the propeller have been determined in various modes of vibration. According to obtained data from Finite Element Method (FEM) numerical analysis, maximum displacement of propeller is for displacement of the propeller tip in forced vibration state


Y. Mirbagheri, H. Nahvi, J. Parvizian,
Volume 34, Issue 2 (1-2016)
Abstract

 Grid dispersion is one of the criteria of validating the finite element method (FEM) in simulating acoustic or elastic wave propagation. The difficulty usually arisen when using this method for simulation of wave propagation problems, roots in the discontinuous field which causes the magnitude and the direction of the wave speed vector, to vary from one element to the adjacent one. To solve this problem and improve the response accuracy, two approaches are usually suggested: changing the integration method and changing shape functions. The Finite Element iso-geometric analysis (IGA) is used in this research. In the IGA, the B-spline or non-uniform rational B-spline (NURBS) functions are used which improve the response accuracy, especially in one-dimensional structural dynamics problems. At the boundary of two adjacent elements, the degree of continuity of the shape functions used in IGA can be higher than zero. In this research, for the first time, a two dimensional grid dispersion analysis has been used for wave propagation in plane strain problems using B-spline FEM is presented. Results indicate that, for the same degree of freedom, the grid dispersion of B-spline FEM is about half of the grid dispersion of the classic FEM.


M. E. Golmakani, V. Zeighami,
Volume 35, Issue 1 (9-2016)
Abstract

In this paper, buckling behavior of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates is studied in line with the plates thikness. All  governing equations are presented incrementally, based on a First-order Shear Deformation Theory (FSDT) of plates and von Karman strain field. In order to find the critical buckling load, the axial load is applied to the plate incrementally and the equilibrium equations are solved by Dynamic Relaxation (DR) method. Parametric study of the effects of volume fraction of Carbon Nanotubes (CNTs), CNTs distribution, plate width-to-thickness ratio and aspect ratio of nano composite plates is done in detail. The results show that functionally graded distribution of CNTs causes a significant increase of critical buckling load.


R. Rajabi, M. Saghafian,
Volume 35, Issue 1 (9-2016)
Abstract

In this paper, viscous dissipation and roughness effects on heat transfer and fluid flow are investigated in microchannels using perturbation method in slip flow regime. The flow is considered to be laminar, developing thermally and hydrodynamically, two-dimensional, incompressible and steady-state. The working fluid is air, flowing between two parallel plates. The equations obtained from developing Navier-Stokes and energy equations are solved numerically according to different orders of Knudsen number, with second-order velocity slip and temperature jump boundary conditions. The effects of thermal creep has been ignored. Tempreture and velocity fields are obtained and estimated for both constatnt heat flux and constant wall tempreture. The effects of roughness height, space between roughness elements, roughness elements length, Re number and Kn number on slip behavior of gas flow are investigated.The results indicate considerable effect of viscous dissipation and roughness on fluid flow and heat transfer in microchannel.


M. Rabbani, F. Taghiniam, H. Farrokhi-Asl , H. Rafiei ,
Volume 35, Issue 2 (2-2017)
Abstract

In this paper, the solution of a non-linear model of Cell Manufacturing (CM) in certain and dynamic conditions is
studied, considering intracellular and extracellular costs, cell constructing costs, the cost of restoration and the cost of equipment
transportation per distance travelled. Since the number of cells in each stage of production is important, by optimizing the
number of cells, additional costs can be minimized. Therefore, the main objective of this study is to investigate the optimal
number of cells located. Bio-geographical Based Optimization (BBO) algorithm is applied in the CM for the first time in the
literature and the obtained results from this algorithm are compared with the results of well-known genetic algorithm. The results
shows the good performance of genetic algorithm. Finally, the conclusion and future research are provided.


F. Bazdidi Tehrani, D. Badaghi, M. Kiamansori , M. Jadidi,
Volume 35, Issue 2 (2-2017)
Abstract

The purpose of the present study is to investigate and analyze numerically, the effective mechanisms on the flow field and pollutant dispersion around a simple and long street canyon by means of Large Eddy Simulation (LES) approach using various inflow turbulence generation methods. For this purpose, four methods i.e. vortex, mapping, synthetic and no-inlet perturbation methods are used as inflow turbulence generators in LES. Results suggest that all methods are capable of capturing the two important structures of canyon vortex and corner eddy, which have great influences on air ventilation inside the street canyon. The magnitudes of concentration on the leeward wall of the first building are approximately four times as much as those
of windward wall of the second building. Among the various inflow turbulence generation methods, the vortex method is the most precise method and no-inlet perturbation method is the least precise method.


H. Kalani, A. Akbarzadeh, S. Moghimi, N. Khoshraftar,
Volume 35, Issue 2 (2-2017)
Abstract

Many efforts have been done in recent years to decrease the required time for analysis of FKP (Forward Kinematics
Problem) of parallel robots.This paper starts with developing kinematics of a parallel robot and finishes with a suggested
algorithm to solve forward kinematics of robots. In this paper, by combining the artificial neural networks and a 3rd-order
numerical algorithm, an improved hybrid strategy is proposed in order to increase the accuracy and speed of forward kinematics
analysis of parallel manipulators. First, an approximate solution of the forward kinematics problem is produced by the neural
network. This approximate solution is then considered as the initial guess for the 3rd-order Newton-Raphson numerical
technique. By applying Stewart-Gough parallel manipulator, the efficiency of the proposed method is evaluated. It is shown that
replacing the Newton-Raphson algorithm by the 3rd-order one leads to a reduction of the iterations required to reach the desired
accuracy level and thus a reduction of the FKP analysis time. Finally, Stewart robot is used to simulate the movement of jaw.
This novel algorithm can be applied to any forward kinematics of serial or parallel robots.


A. R. Ghasemi, M. Mohammadi,
Volume 35, Issue 2 (2-2017)
Abstract

In this study, Circular Disk Model (CDM) has been developed to determine the residual stresses in twophase and three- phase unit cell. The two-phase unit cell is consisting of carbon fiber and matrix. The three-phase unit cell is consisting of carbon fiber, carbon nanotubes and matrix in which the carbon fiber is reinforced with the carbon nanotube using electrophoresis method. For different volume fractions of carbon nanotubes, thermal properties of the carbon fiber and carbon nanotube in different linear and lateral directions and also different placement conditions of carbon nanotubes have been considered. Also, residual stresses distribution in two and three phases has been studied, separately. Results of micromechanical analysis of residual stresses obtained from Finite Element Method and CDM, confirms the evaluation and development of three dimensional CDM.


M. S. Eskandarjuy , A. Baghlani,
Volume 35, Issue 2 (2-2017)
Abstract

In this paper, wave propagation method was applied to detect damage of structures. Spectral Finite Element Method
(SFEM) was used to analyze wave propagation in structures. Two types of structures i.e. rod and Euler-Bernoulli beam were
modelled using spectral elements. The advantage of spectral finite element over conventional Finite Element Method (FEM), in
wave propagation problems, is its accuracy and lower computational time. Two examples of rod and Euler-Bernoulli beam with
embeded concentrated mass were presented to illustrate the superiority of SFEM to FEM. Finally, a cracked beam was modeled
and analyzed using spectral finite elements and the location of the crack was determined using time history response of beam
structure.


R. Ghiasi, M. R. Ghasemi, M. R. Sohrabi,
Volume 36, Issue 1 (9-2017)
Abstract

Utilizing surrogate models based on artificial intelligence methods for detecting structural damages has attracted the attention of many researchers in recent decades. In this study, a new kernel based on Littlewood-Paley Wavelet (LPW) is proposed for Extreme Learning Machine (ELM) algorithm to improve the accuracy of detecting multiple damages in structural systems.  ELM is used as metamodel (surrogate model) of exact finite element analysis of structures in order to efficiently reduce the computational cost through updating process. In the proposed two-step method, first a damage index, based on Frequency Response Function (FRF) of the structure, is used to identify the location of damages. In the second step, the severity of damages in identified elements is detected using ELM. In order to evaluate the efficacy of ELM, the results obtained from the proposed kernel were compared with other kernels proposed for ELM as well as Least Square Support Vector Machine algorithm. The solved numerical problems indicated that ELM algorithm accuracy in detecting structural damages is increased drastically in case of using LPW kernel.

M. Moradi, M. Bagheri Nouri,
Volume 36, Issue 1 (9-2017)
Abstract

In order to obtain transmission spectra through a phononic crystal as well as its waveguide, a new algorithm is presented in this paper. By extracting displacement-based forms of elastic wave equations and their discretization, Displacement- Based Finite Difference Time Domain (DBFDTD) algorithm is presented. Two numerical examples are solvcd with this method and the results are compared with the conventional Finite Difference Time Domain (FDTD) method. In addition, the computational cost of the new approach has been compared with the conventional FDTD method. This comparison showed that the computation time of the DBFDTD method is 40 percent less than that of the conventional FDTD method.

Sh Rezaei, M Eskandari-Ghadi, M. Rahimian,
Volume 36, Issue 1 (9-2017)
Abstract

The acoustic wave velocity depends on elasticity and density at most materials, but because of anisotropy and especially piezoelectric coupling effect, the acoustic wave propagation at piezoelectric based crystalloacoustic materials, is an applied and challenging problem. In this paper, using modified Christoffel's equation based on group velocity concept, the effect of anisotropy and piezoelectric coupling at different wafers of lithium niobate crystalloacoustic (strong anisotropy) on acoustic wave velocity (semi-longitudinal, semi-vertical transverse wave and semi-horizontal transverse wave) is investigated, and validated by experimental data. Then, the acoustic wave velocity ranges that can be supported are determined. The result of this study can be essential at acoustic metamaterials design, Phononic crystal and piezoelectric based wave-guides.

M. Ettefagh, H. Mirab , R. Fathi,
Volume 36, Issue 2 (3-2018)
Abstract

One of the new methods for powering low-power electronic devices employed in the sea, is using of mechanical energies of sea waves. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on not implementing the battery charging system. Although, many studies have been done about energy harvesting from sea waves, energy harvesting with considering random JONWSAP wave theory is not fully studied up to now. The random JONSWAP wave model is a more realistic approximation of sea waves in comparison of Airy wave model. Therefore, in this paper a vertical beam with the piezoelectric patches, which is fixed to the seabed, is considered as energy harvester system. The energy harvesting system is simulated by MATLAB software, and then the vibration response of the beam and consequently the generated power is obtained considering the JONWSAP wave theory. In addition, the reliability of the system and the effect of piezoelectric patches uncertainties on the generated power are studied by statistical method. Furthermore, the failure possibility of harvester based on violation criteria is investigated.


 
B. Sadeghian, M. Ataapour, A. Taherizadeh,
Volume 36, Issue 2 (3-2018)
Abstract

Friction stir welding is of the most applicable methods to join dissimilar metals. In this study, the thermal distribution during the joining of 304 stainless steel and 5083 aluminum alloy by friction stir welding method was simulated by the finite element method. Both, transient and stationary thermal solutions were used in the simulations and the two methods were compared correspondingly. To verify the model, two sheets of stainless steel and aluminum were prepared and the friction stir welding was applied. Additionally, by using thermocouples temperature, the history of points on the sheets was obtained during welding. Then, the simulation and the experimental results were compared to validate the model. Finally, an artificial neural network model was created and the effect of different input parameters on the maximum temperature under the tool was investigated.

Aliakbar Taghipour, J. Parvizian, S. Heinze, A. Duester, E. Rank,
Volume 37, Issue 1 (9-2018)
Abstract

finite cell method, are employed to compute a series of benchmark problems in the finite strain von Mises or J2 theory of plasticity. The hierarchical (integrated Legendre) shape functions are used for the finite element approximation of incompressible plastic dominated deformations occurring in the finite strain plasticity of ductile metals. The computational examples include the necking under uniaxial tension with notched and un-notched samples and the compression of a perforated plate. These computations demonstrate that the high-order finite element methods can provide a locking-free behavior with a pure displacement-based formulation. They also provide high convergence rates and robustness against high mesh distortions. In addition, it is shown that the finite cell method, on the top of the aforementioned advantages, provides easy mesh generation capabilities for highly complex geometries. The computational results are verified in comparison with the results obtained using a standard low-order finite element method known as the F-bar method. The numerical investigations reveal that both methods are good candidates for the plasticity analysis of engineering materials and structures made up of ductile materials, particularly those involving complex geometries.

M. Bagheri, B. Keshtegar,
Volume 37, Issue 1 (9-2018)
Abstract

In this paper, a new method is proposed for fuzzy structural reliability analysis; it considers epistemic uncertainty arising from the statistical ambiguity of random variables. The proposed method, namely, fuzzy dynamic-directional stability transformation method, includes two iterative loops. An internal algorithm performs the reliability analysis using the dynamic-directional stability transformation method and an external algorithm performs the fuzzy analysis by applying the alpha-cut level optimization method based on the genetic algorithm. Implementation of the proposed method, which solves some nonlinear performance functions, indicates the efficiency and robustness of the dynamic-directional stability transformation method, as compared to other first order reliability methods.


M. Rabbani, E. Asgaari, A. Ghavamifar, H. Farrokhi-Asl,
Volume 37, Issue 2 (3-2019)
Abstract

In the recent decades, raw materials and resources have been remarkable issues for researchers; in other words, they play an important role in manufacturing industries or service organizations. On the other hand, the population is increasing every day. An increase in the population means the increased demand for goods or services. Therefore, more resources are needed to deliver services or goods. For this reason, government agencies and environmental agencies have developed and enforced stringent laws against producers and service providers who have exceeded the permissible limits for the environment; in some cases, the use of resources has been even restricted. In the meantime, the supply chain has become one of the major issues that can greatly influence this issue. In this research, the supply chain of the closed loop has been modeled due to uncertainty, disturbances and cost of production. The purpose of this problem has been to minimize the cost of the system in question based on the location decisions, and flow rates between levels and sales. The Lagrangian liberation solution method is used to solve this NP-hard problem. In the end, a numerical example has been employed to test the model and the proposed solution method. The results show that the time of implementation of the large-scale problem with GAMS is higher than that of the proposed method.


A. Noghrehabadi, R. Mirzaei, M. Ghalambaz,
Volume 38, Issue 1 (8-2019)
Abstract

The behavior of many types of fluids can be simulated using differential equations. There are many approaches to solve differential equations, including analytical and numerical methods. However, solving an ill-posed high-order differential equation is still a major challenge. Generally, the governing differential equations of a viscoelastic nanofluid are ill-posed; hence, their solution is a challenging task. In addition, the presence of very tiny nanoparticles (lower than 100 nm) induces new heat and mass transfer mechanisms which can increase the complexity of the behavior of the viscoelastic nanofluids. Therefore, creating or developing new analytical or semi-analytical approaches to solve the governing equations of these types of nanofluids is highly demanded. In the present study, by using a new idea and utilizing an optimization approach, a new solution approach has been presented to solve the governing equations of viscoelastic nanofluids. By using the optimization method, a basic initial guess was changed toward an optimized solution satisfying all boundary conditions and the governing equations. The results indicate the robustness and accuracy of the presented method in dealing with the high-order ill-posed governing differential equations of viscoelastic nanofluids.

Page 7 from 8     

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb