Search published articles


Showing 76 results for Method

M. Khashei, Sh. Torbat,
Volume 37, Issue 2 (3-2019)
Abstract

Financial crises in banking systems are due to inability to manage credit risks. Credit scoring is one of the risk management techniques that analyze the borrower's risk. In this paper, using the advantages of computational intelligence as well as soft computing methods, a new hybrid approach is proposed in order to improve credit risk management. In the proposed method, for modeling in uncertainty conditions, parameters of the neural network, including weights and errors, are considered in the form of fuzzy numbers. In this method, the underlying system is firstly modeled using neural networks and then, using fuzzy inferences, the optimal decision will be determined with the highest degree of superiority. Empirical results of using the proposed method indicate the efficiency and high accuracy of this method in analyzing credit rating problems.


A. Noghrehabadi, R. Mirzaei, M. Ghalambaz,
Volume 38, Issue 1 (8-2019)
Abstract

The behavior of many types of fluids can be simulated using differential equations. There are many approaches to solve differential equations, including analytical and numerical methods. However, solving an ill-posed high-order differential equation is still a major challenge. Generally, the governing differential equations of a viscoelastic nanofluid are ill-posed; hence, their solution is a challenging task. In addition, the presence of very tiny nanoparticles (lower than 100 nm) induces new heat and mass transfer mechanisms which can increase the complexity of the behavior of the viscoelastic nanofluids. Therefore, creating or developing new analytical or semi-analytical approaches to solve the governing equations of these types of nanofluids is highly demanded. In the present study, by using a new idea and utilizing an optimization approach, a new solution approach has been presented to solve the governing equations of viscoelastic nanofluids. By using the optimization method, a basic initial guess was changed toward an optimized solution satisfying all boundary conditions and the governing equations. The results indicate the robustness and accuracy of the presented method in dealing with the high-order ill-posed governing differential equations of viscoelastic nanofluids.
S. A. Ghazi Mirsaeed, V. Kalatjari,
Volume 38, Issue 1 (8-2019)
Abstract

 
In this paper, finite element analysis of thin viscoelastic plates is performed by proposing new plate elements using complex Fourier shape functions. New discrete Kirchhoff Fourier Theory (DKFT) plate elements are constructed by the enrichment of quadratic function fields in a six-noded triangular plate element with complex Fourier radial basis functions. In order to illustrate the validity and accuracy of the presented approach and robustness of the proposed elements in viscoelasticity, finite element analysis of square and elliptical viscoelastic thin plates is performed and the results are compared to those of analytical solutions and with those obtained by discrete Kirchhoff Theory (DKT) elements and the commercial software ABAQUS. The results show that FE solutions using DKFT elements have an  excellent agreement with the analytical solutions and ABAQUS solutions, even though noticeably fewer elements, in comparison to DKT and classic plate elements, are employed, which means that  the computational costs are reduced effectively.
Z. Shafiei, S. Sarrami-Foroushani, M. Azhari,
Volume 38, Issue 2 (2-2020)
Abstract

Graphene is one of the nanostructured materials that has recently attracted the attention of many researchers. This is due to the increasing expansion of nanotechnology and the application of this nanostructure in technology and industry owing to its mechanical, electrical and thermal properties. Thermal buckling behavior of single-layered graphene sheets is studied in this paper. Given the failure of classical theories to consider the scale effects and the limitations of the nano-sized experimental investigations of nano-materials, the small-scale effect is taken into account in this study, by employing the modified couple stress theory which has only one scale parameter. On the other hand, the two-variable refined plate theory, which considers the shear deformations in addition to bending deformations, is used to define the displacement field and to formulate the problem. The developed finite strip method formulation is used to evaluate the critical buckling temperature of the nanoplates. The validity of the proposed method is confirmed by comparing the results of this study with the those in the literature. The effects of different boundary conditions, temperature changing patterns, aspect ratio, and the ratio of length parameter to thickness on the critical buckling temperature are considered and the results are presented in the form of Tables and Figures
F. Moradpouri,
Volume 38, Issue 2 (2-2020)
Abstract

Wave-field extrapolation based on solving the wave equation is an important step in seismic modeling and needs a high level of accuracy. It has been implemented through a various numerical methods such as finite difference method as the most popular and conventional one. Moreover, the main drawbacks of the finite difference method are the low level of accuracy and the numerical dispersion for large time intervals (∆t). On the other hand, the symplectic integrators due to their structure can cope with this problem and act more accurately in comparison to the finite difference method. They reduce the computation cost and do not face numerical dispersion when time interval is increased. Therefore, the aim of the current paper is to present a symplectic integrator for wave-field extrapolation using the Euler method. Then, the extrapolation is implemented  for rather large time intervals using a simple geological model. The extrapolation employed for both symplectic Euler and finite difference methods showed a better quality image for the proposed method. Finally the accuracy was compared to the finite difference method
 
M. Jamei, H. R. Ghafouri,
Volume 38, Issue 2 (2-2020)
Abstract

In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The pressure equation and convection dominant saturation equation are discretized using the nonconforming Crouziex-Raviart finite element (CR FEM) and the weighed interior penalty discontinuous Galerkin (SWIP) method, respectively. Utilizing the nonconforming finite element method for solving the flow equation made the pressure and velocity values be consistent with respect to the degrees of freedom arrangement at the midpoint of the neighboring element edges. The boundary condition governing the simulation is the Robin type at entrance boundaries, and the time marching discretization for the governing equations is the sequential solution scheme. An H (div) projection using Raviart-Thomas element is implemented to improve the results’ resolution and preserve the continuity of the normal component of the velocity field. At the end of each time step, the non-physical oscillation is omitted using a slope limiter, namely, modified Chavent-Jaffre limiter, in each element. Also, in this study, the developed algorithm is verified using some benchmark problems and the test cases are considered to demonstrate the efficiency of the developed model in capturing the shock front at the interface of fluid phases and discontinuities.


M. Rezaee, M. M. Ettefagh, R. Fathi ,
Volume 39, Issue 1 (8-2020)
Abstract

Although the traditional automatic ball balancer (ABB) has numerous advantages, it has two major deficiencies, i.e., it has a limited balance stable region and it increases the vibration amplitude of the rotor at transient state. These deficiencies limit the applicability of ABBs. In this regard, a new type of ABB called “the Ball-spring autobalancer” has been proposed to resolve the mentioned deficiencies of the traditional ABBs. In order to investigate the capability of the Ball-spring AB in balancing rotors, it is necessary to study its dynamics accurately. The dynamics of a rotor with linear bearing equipped with a Ball-spring AB has been studied previously; however, in real situations, the bearings have nonlinear characteristics. Here, the dynamics of a rotor with nonlinear bearings equipped with a Ball-spring AB is investigated by the multiple scales method for the first time. The results show that the nonlinearity at the rotor bearings does not impair the advantages of the Ball-spring AB.
 
S.m. Naghavi, G.a. Sheikhzadeh,
Volume 39, Issue 1 (8-2020)
Abstract

Lattice Boltzmann method is one of computational fluid dynamic subdivisions. Despite complicated mathematics involved in its background, end simple relations dominate on it; so in comparison to the conventional computational fluid dynamic methods, simpler computer programs are needed. Due to its characteristics for parallel programming, this method is considered efficient for the simulation of complex geometry flows, in which a large amount of computational memories is needed. Because of the curved boundaries in the complex geometries, detecting the proper curved boundary condition is unavoidable for the lattice Boltzmann method. For this purpose, more works have been done, and different curved boundary conditions have been proposed. At the present work, first, some curved boundary conditions have been reviewed; then a simplified curved boundary condition is proposed. A computer program based on the lattice Boltzmann method, in FORTRAN language, has been prepared; in this program, the boundary condition along with some others applied on it is proposed. To verify the accuracy and correctness of the proposed boundary condition, 2D cavity flow has been simulated and compared to the available numerical results. Adaptation of the achieved results with those of previous researchers verifies the prepared program correctness. Also, two fluid flows have been simulated, a flow around a stationary cylinder in a 2D channel and one between two stationary and moving cylinders. The results of simulations with the proposed boundary condition, along with the previous boundary conditions, have been compared to the available results. Comparisons demonstrate that solutions with proper accuracy could be obtained by the proposed boundary condition.
Z. Barouei, M. Jabbarzadeh,
Volume 39, Issue 2 (2-2021)
Abstract

In this paper, the nonlinear bending analysis for annular circular nano plates is conducted based on the modified coupled stress and three-dimensional elasticity theories. For this purpose, the equilibrium equations, considering nonlinear strain terms, are calculated using the least energy potential method and solved by the numerical semi-analytical polynomial method. According to the previous works, there have been no studies calculating all boundary conditions numerically based on three-dimensional elasticity. Typically, the research done on three-dimensional elasticity is either finite element or only for a simply-supported boundary condition. In this research, for the first time, the nonlinear analysis of bending is calculated with the help of three-dimensional elasticity for a variety of boundary conditions. Also, with the help of the modified couple stress theory, the results on the nano-scale scale have been studied. In the following, while validating the results, we investigate the changes in the scale parameter for the types of boundary conditions, the effect of changing the parameter of scale in different thicknesses, and the impact of the parameter of scale on the linear and nonlinear results.
R. Keshavarzi, Sh. Hatami, Sh. Hashemi,
Volume 39, Issue 2 (2-2021)
Abstract

Plates made of laminated composite materials with variable stiffness can have wide applications in various branches of engineering due to such advantages as high strength /stiffness to weight ratio. In these composites, curved fibers are used to reinforce each lamina instead of the straight fibers. In this paper, the application of finite strip method for the buckling analysis of moderately thick composite plates with variable stiffness is investigated. For buckling analysis, a semi-analytical finite strip method based on the first-order shear deformation theory is employed. In this method, all displacements are presumed by the appropriate harmonic shape functions in the longitudinal direction and polynomial interpolation functions in the transverse direction. The minimum potential energy method has been used to develop the stability formulations. This analysis examines the effect of using curved fibers instead of straight fibers on the laminate composites. The critical loads obtained from this analysis are compared with those of other researchers and the efficiency and accuracy of the developed finite strip method are confirmed. Comparison of the analysis results of these plates shows that changing the slope of the fibers can lead to a significant change in the buckling response. Also, increasing the number of the terms of shape functions in the longitudinal direction has a significant effect on the convergence to the desired results.
O. Bateniparvar, N. Noormohammadi, A. M. Salehi,
Volume 39, Issue 2 (2-2021)
Abstract

In this paper, Equilibrated Singular Basis Functions (EqSBFs) are implemented in the framework of the Finite Element Method (FEM), which can approximately satisfy the harmonic PDE in homogeneous and heterogeneous media. EqSBFs are able to automatically reproduce the terms consistent with the singularity order in the vicinity of the singular point. The newly made bases are used as the complimentary enriching part along with the polynomial bases of the FEM to construct a new set of shape functions in the elements adjacent to the singular point. It will be shown that the use of the combined bases leads to the quality improvement of the solution function as well as its derivatives, especially in the vicinity of the singularity.
M. Hashemian, M. Jabbarzadeh,
Volume 40, Issue 1 (9-2021)
Abstract

In this paper, nonlinear bending analysis of functionally graded rectangular and sectorial micro/nano plates is investigated using the modified couple stress theory. For this purpose, a higher-order shear deformation theory and von Kármán geometrically nonlinear theory are employed. The equilibrium equations and the boundary conditions for rectangular and annular sector plates are derived from the principle of minimum total potential energy and solved using the Semi-Analytical Polynomial Method (SAPM). One of the advantages of the implemented shear deformation theory is removing the defects of higher order shear deformation theory, and obtaining the response of the first and the third-order shear deformation theories at the same time. Afterwards, beside investigating the benefits of this theory compared with other ones, the results are verified with those by other researches. At the end, the effects of length scale parameter, boundary conditions, power law index, and geometrical dimensions are investigated
P. Rastegar Rajeouni, A. R. Rahmati,
Volume 40, Issue 1 (9-2021)
Abstract

In order to simulate multiphase flow in the presence of dielectric current using the Lattice Boltzmann Method (LBM), three distribution functions are used, two of which for using the He-Chen-Zhang phase field model and one for solving the potential field. Initially, the ability of the code to apply surface tension was tested using the Laplace law and the drop release test. The results show that the present numerical program is capable of modeling well the regulated surface tension force. Then, the Rayleigh–Taylor instability simulation is used to evaluate the code's ability in applying volume forces. The results by the developed numerical program are in good agreement with the numerical results in the references. In this study, for the first time, the effect of electric field on a droplet immersed in another fluid and the presence of droplet in a porous medium is investigated by LBM. For this purpose, first the droplet motion due to the potential difference in the porous and non-porous media is investigated. After modeling the droplet motion due to the potential difference, two electric fields areapplied to the droplet to reverse the droplet deformation. Through various tests, it is shown that at a given potential difference, the droplet breaks down after much deformation and is divided into smaller droplets. The decomposition of droplets in a pre-mixed emulsion is a common technique in the production of monodisperse droplets. The presence of monodisperse droplets in an emulsion improves the physical properties of polymer science experts.
B. Movahedian Attar, M. Sadeghi,
Volume 40, Issue 1 (9-2021)
Abstract

Accurate determination of the response of structures under dynamic loads such as earthquake loads plays an important role in the safe and economical design of structures. The purpose of this paper is to utilize a novel solution method based on the use of exponential basis functions for dynamic analysis of Bernoulli beam subjected to different types of base excitations. This method was firstly introduced for solving scalar wave propagation problems, named as stepwise time-weighted residual method. The proposed method considers the solution as a series of exponential basis functions with unknown constant coefficients; and the problem is solved in time without the need for spatial discretization of the beam and by using an appropriate recursive relation to correct the coefficients of the exponential bases. In order to apply the earthquake excitation, first by using the central finite difference relation, the earthquake acceleration history is converted to displacement history. Moreover, the displacement history is applied to the beam as a time-varying boundary condition. In this study, the capabilities of the proposed method in solving several sample problems of vibration of single and multi-span beams under various stimuli such as earthquake acceleration variations are compared with the results of other existing methods.
A. R. Rahmati , E. Kashai,
Volume 40, Issue 2 (1-2022)
Abstract

A two-phase lattice Boltzmann model considering the interaction forces of nanofluid has been developed in this paper. It is applied to investigate the flow and natural convection heat transfer of Al2O3–H2O nanofluid in an enclosure containing internal heat generation. To understand the heat transfer enhancement mechanism of the nanofluid flow from the particle level, the lattice Boltzmann method is used because of its mesoscopic feature and numerical advantages. By using a two-component lattice Boltzmann model, the heat transfer enhancement of the nanofluid is analyzed through incorporating the different forces acting on the nanoparticles and the base fluid . The effects of interaction forces, nanoparticle volume fractions (0.0-0.05), and internal and external Rayleigh numbers (103-106) on the nanoparticle distributions and heat transfer characteristics are investigated. The average Nusselt number increases with the increase of nanoparticle volume fraction and Rayleigh number. We also compared and analyzed adding internal heat generation on the nanoparticles and the base fluid separately, and it was found that by considering heat generation on the base fluid, it mostly affects the temperature field, and by considering that on nanoparticles, it mostly affects the stream field.
F. F. Heidargheitaghi, M. H. M. H. Ghadiri Rad, M. Kazemi,
Volume 40, Issue 2 (1-2022)
Abstract

Continuously varying cross-section members have found wide applications in engineering for cost and resistance optimization. Since steel structures generally have more slender members compared to concrete structures, buckling analysis of steel members is of more importance. Determining the critical load of functionally varying cross-section columns using the analytical solution is a time-consuming process. In this paper, buckling analysis of non-prismatic steel columns is conducted using the meshless local Petrov-Galerkin (MLPG) method. In meshless methods, the scattered nodes are used rather than the elements to model the problem domain and its boundaries. The change of the inertia moment within the length of a column is characterized by introducing a power function with variable taper ratio and exponent. The radial basis function is used to discretize the differential equation governing the buckling. The penalty method is used for the imposition of the boundary conditions. Numerical examples of the critical buckling load for prismatic and non-prismatic columns using the proposed method are compared with the analytical solution, and the effectiveness of the MLPG method for buckling analysis of non-prismatic columns is validated. Also, buckling analysis of muscle column members subjected to non-uniform axial load is carried out to show the efficiency of the proposed method. The effect of several parameters such as non-uniformity of the load and variation of the cross-section on the buckling load of the column is discussed in details.
R. Salamat Mamakani , A. Azhari,
Volume 40, Issue 2 (1-2022)
Abstract

Dynamic stability and liquefaction of tailings dams are great concerns for geotechnical engineers. In this study, the seismic response of the Esphordi mine tailing dam located in Bafgh seismic region of Yazd province is investigated. A finite-difference code (FLAC2D) is used to model the seismic liquefaction applying two constitutive criteria, namely Mohr-Coulomb and Finn-Byrne. For this purpose, a fish function is implemented into the code to simulate the non-linear elasto-plastic Finn-Byrne constitutive model. Horizontal and vertical displacements (subsidence) in the dam body, additional pore pressure, failure zones, and liquefaction due to seismic load were determined using the two selected criteria under the seismic load of the 6.4 magnitude earthquake occurred in 2005. Considering the type of behavioral model, Mohr-Coulomb and Finn-Byrne, the maximum horizontal displacement of 5 and 35 cm in the dam body and downstream, and subsidence of 4 and 23 cm at the dam crest and upstream are observed, respectively. Also, the calculated ratio of excess pore pressure (Ru), for both criteria, was less than the liquefaction limit (0.9), the maximum value of which was 0.7 for the Finn-Byrne criterion and 0.2 for the Mohr-Coulomb criterion. In general, the results show that considering the cumulative effect of the seismic load cycles in the Finn- Byrne model, this criterion provides a better understanding of the liquefaction phenomenon.
S. Torfeh, Ramin Kouhikamali,
Volume 41, Issue 1 (9-2022)
Abstract

Accurate modeling of fluidization and heat transfer phenomena in gas-solid fluidized beds is not solely dependent  on the particular selected numerical model and involved algorithms. In fact, choosing the right model for each specific operating condition, the correct implementation of each model, and the right choice of parameters and boundary conditions, determine the accuracy of the results in the evaluation of the performance of fluidized beds. In this research, in order to accurately simulate heat transfer in fluidized beds, important and effective parameters on two-fluid Eulerian model that incorporate the kinetic theory of granular flow were investigated. For this purpose, effects of particle-particle and particle-wall restitution coefficient, specularity coefficient, granular temperature and effective thermal conductivity coefficients determination methods on the numerical solution were evaluated. These investigations were first carried out on heat transfer from hot air to solid particles in an adiabatic fluidized bed, and then on a fluidized bed with constant temperature walls for bubbling and turbulent regimes. Results showed that specularity coefficient and effective thermal conductivity are important parameters in heat transfer process from wall to bed. In this case, the zero value of the specularity coefficient causes the air temperature to increase by about 7 degrees in the bubbling regime and about 5 degrees in the turbulent regime, and its unit value gives the same results with the no-slip condition. In addition, considering the solid and gas material thermal conductivities causes the outlet air temperature to be about 26 degrees higher than the temperature that is obtained by considering the effective thermal conductivity coefficients with standard approach. The partial differential and algebraic form of the conservation equation for the particles kinetic energy show identical results in dense fluidized beds, although considering a constant granular temperature can cause computational errors.
H. Salehipour,
Volume 41, Issue 1 (9-2022)
Abstract

In this paper, static buckling of homogeneous beams coated by a functionally graded porous layer with different boundary conditions is investigated based on the Timoshenko beam theory. The principle of virtual work has been used to obtain the governing equations. Two different methods, namely analyticalsolution and numerical solution are used to solve the governing equations and extract the buckling force. The governing equations are coupled as a series of ordinary differential equations. In the analytical solution, these equations are first uncoupled using a series of mathematical operations, and are then solved. The obtained solution has a series of parameters and unknown constants. Using the boundary conditions at the boundaries of the beam, a homogeneous system of equations is extracted, from which the axial buckling force is obtained. In the numerical solution, the generalized differential quadrature method is used to solve the static equations. Finally, the numerical results are presented and the effects of various parameters such as thickness to beam length ratio, porous layer thickness, porosity parameter, etc. on the buckling of the beam are investigated. Comparison of the results obtained from the two analytical and numerical solution methods confirms the accuracy and validity of both methods.
 
M. Ghomeshi Bozorg,
Volume 41, Issue 1 (9-2022)
Abstract

In this paper, dynamic instability due to parametric and external resonances of moderately thick functionally graded rectangular plates, under successive moving masses, is examined. Plate mass per unit volume and Young’s modulus are assumed to vary continuously through the thickness of the plate and obey a power-law distribution of the volume fraction of the constituent. The considered rectangular plates have two opposite simply supported edges while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The governing coupled partial differential equations of the plate are derived based on the first-order shear deformation theory with consideration of the rotational inertial effects and the transverse shear stresses. All inertial components of the moving masses are considered in the dynamic formulation. Using the Galerkin procedure, the partial differential equations are transformed into a set of ordinary differential equations with time-dependent coefficients. The Homotopy Analysis Method (HAM) is implemented as a semi-analytical method to obtain stable and unstable zones and external resonance curves in a parameters space. The effects of the index of volume fraction, thickness to length ratio, and different combinations of the boundary conditions on the dynamic stability of the system are also investigated. The results indicate that decreasing the index of volume fraction, increasing thickness to length ratio, and higher degree of edge constraints (respectively from free to simply-supported to clamped) applied to the other two edges of the plate shift up the instability region and resonance curves in the parameters plane and, from a physical point of view, the system becomes more stable. In addition to using numerical simulations of the plate midpoint displacement, Floquet theory is also employed to validate the HAM results. Finally, the results of this study, in a particular case, are compared and validated with the results of other works.

Page 3 from 4     

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb