Search published articles


Showing 3 results for Artificial Neural Networks

A. Fathi, A. A. Aghakuchak, and Gh. A. Montazer,
Volume 26, Issue 2 (1-2008)
Abstract

In welded tubular joints, when the fatigue crack depth is less than 20% of chord wall thickness, the crack growing process is highly affected by weld geometry. Hence, T-butt solution and weld magnification factor (Mk) are applicable tools for evaluating the crack growth rate in this domain. In this research, the capability of Artificial Neural Network (ANN) for estimating the Mk of weld toe cracks in T-butt joints is investigated. Four Multi-Layer Perceptron (MLP) networks are designed and trained to predict the Mk in deepest point and ends of weld toe cracks under membrane and bending stresses. Training and testing data of networks are extracted from a reputable resource on finite element modeling. Comparison of the results obtained and those from the most recently published equations shows that using ANN seems to be very beneficial in this field
H. Kalani, A. Akbarzadeh, S. Moghimi, N. Khoshraftar,
Volume 35, Issue 2 (2-2017)
Abstract

Many efforts have been done in recent years to decrease the required time for analysis of FKP (Forward Kinematics
Problem) of parallel robots.This paper starts with developing kinematics of a parallel robot and finishes with a suggested
algorithm to solve forward kinematics of robots. In this paper, by combining the artificial neural networks and a 3rd-order
numerical algorithm, an improved hybrid strategy is proposed in order to increase the accuracy and speed of forward kinematics
analysis of parallel manipulators. First, an approximate solution of the forward kinematics problem is produced by the neural
network. This approximate solution is then considered as the initial guess for the 3rd-order Newton-Raphson numerical
technique. By applying Stewart-Gough parallel manipulator, the efficiency of the proposed method is evaluated. It is shown that
replacing the Newton-Raphson algorithm by the 3rd-order one leads to a reduction of the iterations required to reach the desired
accuracy level and thus a reduction of the FKP analysis time. Finally, Stewart robot is used to simulate the movement of jaw.
This novel algorithm can be applied to any forward kinematics of serial or parallel robots.


M. Khashei, Sh. Torbat,
Volume 37, Issue 2 (3-2019)
Abstract

Financial crises in banking systems are due to inability to manage credit risks. Credit scoring is one of the risk management techniques that analyze the borrower's risk. In this paper, using the advantages of computational intelligence as well as soft computing methods, a new hybrid approach is proposed in order to improve credit risk management. In the proposed method, for modeling in uncertainty conditions, parameters of the neural network, including weights and errors, are considered in the form of fuzzy numbers. In this method, the underlying system is firstly modeled using neural networks and then, using fuzzy inferences, the optimal decision will be determined with the highest degree of superiority. Empirical results of using the proposed method indicate the efficiency and high accuracy of this method in analyzing credit rating problems.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb