Search published articles


Showing 2 results for Equilibrated Basis Functions

O. Bateniparvar, N. Noormohammadi, A. M. Salehi,
Volume 39, Issue 2 (2-2021)
Abstract

In this paper, Equilibrated Singular Basis Functions (EqSBFs) are implemented in the framework of the Finite Element Method (FEM), which can approximately satisfy the harmonic PDE in homogeneous and heterogeneous media. EqSBFs are able to automatically reproduce the terms consistent with the singularity order in the vicinity of the singular point. The newly made bases are used as the complimentary enriching part along with the polynomial bases of the FEM to construct a new set of shape functions in the elements adjacent to the singular point. It will be shown that the use of the combined bases leads to the quality improvement of the solution function as well as its derivatives, especially in the vicinity of the singularity.
M. Azizpooryan, N. Noormohammadi,
Volume 40, Issue 1 (9-2021)
Abstract

In this paper, static analysis of in-plane heterogeneous laminated composite plates is numerically studied. The Mindlin’s theory which considers linear transverse shear deformation has been implemented. The governing partial differential equation is satisfied by a weighted residual integration. Chebyshev polynomials of the first kind are used as basis functions and exponential functions make up the weight functions of the integration. The emerging integrals may be composed of some pre-evaluated 1D normalized ones, which effectively paces up the solution progress. To verify the method, several examples of homogeneous as well as heterogeneous plates with various lamination schemes and boundary conditions have been solved. Results are compared with those from the literature or by commercial codes, which reveal excellent accuracy of the proposed method.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb