Search published articles


Showing 2 results for Imperfection

A. R. Safari, M. Ghayour, and A. Kabiri,
Volume 25, Issue 1 (7-2006)
Abstract

It is empirically established that, due to a number of factors involved, a classical (linear) analysis of buckling pressure is impossible. Nonlinear theories of buckling are, therefore, required that involve effective factors such as imperfections and welding effects. In this study, models are developed which are as close to allowable standard deviations as possible. In the next stage, their buckling behavior is investigated both experimentally and numerically using finite element packages ADINA, ANSYS, COSMOS, and MARC based on specific capabilities of each. Results show that reasonable estimates of real buckling pressure will become possible when material and geometrical nonlinearities and initial imperfections are introduced into the analytical system. Finally, in the light of the results obtained, a submarine pressure hull is analyzed.
M. Mohammadimehr, S. Alimirzaei,
Volume 36, Issue 2 (3-2018)
Abstract

In this research, the nonlinear buckling analysis of Functionally Graded (FG) nano-composite beam reinforced by various distributions of Boron Nitrid Nanotube (BNNT) is investigated under electro-thermodynamical loading with considering initial geometrical imperfection. The analysis is performed based on nonlocal elasticity theory and using the Finite Element Method (FEM). Various distributions of BNNT along the beam’s thickness are considered as uniform and decreasing-increasing functionally graded; and the extended mixture model is used to estimate the properties of nano-composite beam. The elastic medium around the smart nano-composite beam is modeled as elastic foundation. The governing equations of equilibrium are derived using energy method and nonlocal elasticity theory; and the critical buckling load is obtained for various boundary conditions such as simply-simply supported (S-S) and clamped-clamped (C-C) using the FEM. The results indicate that with an increase in the geometrical imperfection parameter, the stiffness of nano-composite beam increases and consequently the stability of the system increases. The effect of FG-X distribution type is more than uniform distributions. Also, the critical buckling load of nano-composite beam increases with an increase in the electric field and elastic foundation.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb