Search published articles


Showing 1 results for Lithium-Ion Batteries

S. Esmizade, H. Haftbaradaran, F. Mossaiby,
Volume 37, Issue 1 (9-2018)
Abstract


Experiments have frequently shown that phase separation in lithium-battery electrodes could lead to mechanical failure, poor cycling performance, and reduced capacity. Here, a phase-field model is utilized to investigate how phase separation affects the evolution of the concentration and stress profiles within the spherical/cylindrical electrode particles, during both insertion and extraction half-cycles. To this end, the governing equations are derived and then discretized using the central finite difference method. The resulting algebraic equations are solved numerically with the aid of the Newton-Raphson method to determine both the concentration and stress fields in the electrode particles. For further verification, the results are compared against predictions of an analytical core-shell model. The results suggest that, within the range of parameters considered here, phase separation could lead to a more than five-fold increase in the maximum tensile stress at the particles surface.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb