Search published articles


Showing 3 results for Magnetic Field

M. Falsafi, H. Kargarsharifabad,
Volume 34, Issue 1 (7-2015)
Abstract
M. Nemati, M. Sefid, M. S. Barghi Jahromi, R. Jahangiri,
Volume 40, Issue 2 (1-2022)
Abstract

In the present work, the effect of magnetic field, changes in the angle of inclination of the cavity and the shape of nanoparticles on the flow field and heat transfer of water-alumina with uniform heat generation/absorption is investigated by Lattice Boltzmann method (LBM). The curved wall and the diagonal walls of the cavity are at a constant temperature of hot and cold, respectively. Nanoparticle volume fraction  of 0, 0.02 and 0.04, Hartmann number of 0, 15, 30, 45 and 60, heat generation/absorption coefficient of -5, 0 and +5 and inclination angle of 45, 135 and 225 degrees are studied. The high accuracy of the results compared to previous studies confirmed the correctness of the code written in Fortran language. The results shows that in all cases, increasing the Hartmann number leads to a decrease in the maximum value of the streamlines and the average Nusselt number, with the lowest effect at 225 degrees. Also increasing the strength of the magnetic field leads to an average decrease of 28, 23 and 7% of the average Nusselt number for angles of 45, 135 and 225 degrees, respectively. Increasing the heat generation/absorption coefficient is a determining factor in the effectiveness of the magnetic field and adding nanoparticles, and increasing it reduces the amount of heat transfer. On average, heat generation reduces the average Nusselt number by 71, 98, and 145 percent for the angles of 45, 135, and 225 degrees, respectively. In general, the lowest value of the average Nusselt number is related to the angle of 225 degrees, but the effect of adding nanoparticles in increasing the average Nusselt number is the highest at this angle. Generally, an increase in the percentage of nanoparticles leads to an average increase of 12% in the average Nusselt number. The effect of nanoparticle shape is more apparent with increasing their volume fraction. The highest amount of heat transfer is related to the cylindrical nanoparticles, in which the average Nusselt number is on average about 6% higher than the spherical state.
P. Gilavand, H. R. Heidari,
Volume 40, Issue 2 (1-2022)
Abstract

In this paper, the effect of water- iron oxide (Fe3O4) nanofluid on a channel heat transfer in the presence of perpendicular to the flow variable magnetic field with creating axial obstacles using a mixed single-phasee model is investigated numerically. The effects of magnetic field are added to governing equations of ferrofluid by writing codes and the problem geometry is generated and networked in Gambit 2.4 software. The network used is constructed in a three-dimensional and the governing non-linear differential equations are solved according to the finite volume method by using the Fluent software. Also, the effect of parameters such as obstacles in the flow path, dimensionless number of magnetic field intensity and Reynolds dimensionless number on heat transfer have been studied. The results show that creating obstacles in the flow path causes turbulence in the fluid flow, which increases the overall heat transfer. Also, the application of a magnetic field on the magnetic nanofluid causes the penetration of the cool boundary layer in the central parts of the channel and with increasing the intensity of the magnetic field, the penetration of this layer increases. As a result, the amount of Nusselt number and heat transfer has increased, and this improvement in heat transfer and Nusselt number increases with increasing Reynolds number.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb