Search published articles


Showing 2 results for Morphology

A. Saatchi, H. Yan, and S. J. Harris,
Volume 20, Issue 1 (7-2001)
Abstract

Zinc was electrodeposited from an acidic sulphate solution on commercial steel sheet substrates galvanostatically at 10, 20, and 100 mA/cm2. The steel substrates had an average roughness number of 1.34 microns and a high percentage of its grains had their (111) planes parallel to the plate surface. During electrodeposition at 10 mA/cm2, on some specimens, there was an intense potential fluctuation around –870 mV vs Saturated Calomel Electrode (SCE). During this period zinc hydroxide precipitated on the surface. After a certain time, the potential dropped to –1020 for zinc deposition. Zinc nuclei were seen to precipitate from zinc hydroxide. Increasing current density changed nucleation mode from progressive to instantaneous, and also changed the size, morphology, and texture of zinc deposits. Keywords: Zinc Electroplating, Current Density, Morphology, Orientation
K. Raeissi, A. Saatchi and M. A. Golozar,
Volume 23, Issue 2 (1-2005)
Abstract

On electropolished steel at low current densities, morphology and texture of electrodeposited zinc were investigated. Zinc coating is consisted of hexagonal crystallites laid on each other to produce packets. These packets are of different sizes and are stacked in different orientations to construct a homogeneous coating on steel substrate. This coating does not have texture, i.e., it has a random texture. With increasing current density, the morphology changes completely as each grain attains a special orientation. In this case, coating has a strong basal plane (0002) along with low angle planes (1013 and 1014). Coating obtained on mechanically polished surfaces consists of individual packets of zinc crystals, which are near each other with different orientations. These coatings have a higher density of basal plane (0002) in comparison to electropolished surfaces. The morphology and texture variations with cathodic polarization and surface preparation of steel are due to their effect on nucleation and growth.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb