Search published articles


Showing 8 results for Pert

M. Kalantar and G. Fantozzi,
Volume 22, Issue 1 (7-2003)
Abstract

Dense Silicon nitride was investigated to determine the effect of its microstructural parameters and densification on thermo-mechanical properties and thermal stress resistance to fracture initiation during a hot or cold mechanical and thermal shock testing. The different materials and microstructures were obtained by changing the parameters such as the type of the powder, additive, forming process and sintering condition. Maximum crack growth and thermal shock resistance of dense Si3N4 are achieved after complete conversion of the aàB transformation, and after the change in grain morphology towards elongated grain and the relative crystallization of the second phases have been obtained. The characteristics are obtained by a high a phase content of the starting powder, high Y2O3, and sintering condition of higher temperature (2000ْC), longer soaking times (1h) and load application at the beginning of the thermal cycle. Keywords: Silicon nitride, Thermo- mechanical properties, Thermal shock resistance, Crack propagation resistance
M. Rabbani, K. Rezaie, M. M. Lotfi and M. Abadi,
Volume 23, Issue 1 (7-2004)
Abstract

In this paper, a new method for developing a lower bound on exact completion time distribution function of stochastic PERT networks is provided that is based on simplifying the structure of this type of network. The designed mechanism simplifies network structure by arc duplication so that network distribution function can be calculated only with convolution and multiplication. The selection of duplicable arcs in this method differs from that of Dodin’s so that it must be considered a different method. In this method, best duplicable arcs are adopted using a new mechanism. It is proved that duplicating numbers is minimized by this method. The distribution function of this method is a lower bound on exact network distribution function and an upper bound on distribution function of Dodin’s and Kleindorfer’s methods. After the algorithm for the method is presented, its efficiency is discussed and illustration examples will be used to Compare numerical results from this method with those from exact network distribution and Dodin’s method.
S. A. Hosseini, G. Afkhami, A. Tabibi and A. Sadeghi,
Volume 23, Issue 1 (7-2004)
Abstract

Physical properties of cotton yarns are affected by the characteristics of cotton fibers such as fineness, length, maturity and strength. This relationship has been worked out by means of multivariable regression and stepwise method for an open-end spun (NeC 20) cotton yarn. Moreover, with the help of linear programming, it was made possible to determine the percentage of different cottons in the blend with the aim of reducing the yarn price to a minimum while keeping the yarn quality to a certain level.
S. M. Mortazavi and M. Sedighipoor,
Volume 24, Issue 1 (7-2005)
Abstract

The presence of defects in cold mercerizing of cotton goods led to the creation of a new method, called hot mercerizing in which caustic soda solution is used at a high temperature. Hot mercerizing is successfully used in cotton blended with some other fibers. In cotton/polyester blend fabrics, this treatment serves a dual purpose: subjectively, it imparts a silklike soft handle to the polyester and brings about mercerizing of the cotton. In this work, the mercerizing operation with caustic soda solution was performed on a 65/35 polyester/cotton fabric in sixteen different temperatures (from 15°C to 90°C), in two states: with tension and without tension. Finally, the effect of temperature of treatment on some properties of fabric such as tensile properties, weight loss, and shrinkage have been studied. Alkali treatment cause weight loss in cotton/polyester blend fabrics, the main part of the weight loss attributed to the polyester component of the blend. Increasing temperature leads to a corresponding increased in weight loss. The resulting weight loss leads to more yarn release and consequently, to the improvement of the drape and soft handle in the fabric. However, it decreases the tensile strength and causes weakness of the fabric, therefore, an optimum of temperature must be considered. In the alkali treatment, the internal stresses in the fabric can be released. Release of tension in the fabric causes shrinkage, particularly in the warp direction. The effect of tension on properties of cotton/polyester blend fabric is not considerable in alkali treatment.
A.a. Gharehaghaji, M. Palhang, and M. Shanbeh,
Volume 24, Issue 2 (1-2006)
Abstract

Artificial Neural Networks are information processing systems. Over the past several years, these algorithms have received much attention for their applications in pattern completing, pattern matching and classification and also for their use as a tool in various areas of problem solving. In this work, an Artificial Neural Network model is presented for predicting the tensile properties of cotton-covered nylon core yarns. Multilayer Feedforward network with Back Propagation learning algorithm was used to study the relationship and mapping among the process parameters, i.e. count of sheath part, count of core part, applying pretension to the core part, inserted twist to the core spun-yarn as well as tensile properties, i.e. breaking strength and breaking elongation. The results show that ANN is an effective method for the prediction of the tensile properties of these yarns. This is due to the fact that in each case, standard deviation of prediction error for test and train data was less than that obtained from the expreiments.
L. Saidi, M. Sheikhzadeh, S.a. Hosseini Ravandi, and K. Matin,
Volume 27, Issue 2 (1-2009)
Abstract

Stretchable woven chute is a safe device for falling humans from multi-story buildings in emergencies. During the fall, the elastomeric property of the fabric, in the weft direction, causes radial forces towards the human body inside .These radial forces lead to frictional forces between the chute and the body. The falling man can reduce the falling speed by exerting outward forces via stretching and contracting arms or legs. In this research, a model is developed to analyze the different forces involved in the fall based on the so-called thin sheet tank fall relations. The model is capable of determining body characteristics with respect to the real model. Finally, real-world model predictions have been made in which the effects of body weight and dimensions have been considered of.
M. Ghomeshi Bozorg, M. Keshmiri ,
Volume 34, Issue 1 (7-2015)
Abstract

In this paper, considering all the linear and nonlinear inertia terms of moving masses on a flexible beam, the dynamic response and dynamic stability of the beam are studied. Homotopy perturbation method is used to perform the analysis and results are provided in a stability map for the different values of mass and velocity of the moving masses. It is concluded that there is a borderline in the diagram that separates the stable and unstable regions. For the first time, this borderline is determined semi-analytically. Results of the stability analysis are validated using the Floquet theory. In addition to this borderline, it is also concluded that the Homotopy perturbation method is capable of evaluating the new critical values for mass and velocity which cause vibration resonance in the beam. The locus of these resonant points, which is totally a new finding in dynamic analysis of beam-moving mass problem, is determined semi-analytically. Finally, the effect of the friction between the beam and the moving mass is studied on the stability of the system and resonant conditions. Accuracy of the results for this case is also evaluated with a numerical simulation.


R. Rajabi, M. Saghafian,
Volume 35, Issue 1 (9-2016)
Abstract

In this paper, viscous dissipation and roughness effects on heat transfer and fluid flow are investigated in microchannels using perturbation method in slip flow regime. The flow is considered to be laminar, developing thermally and hydrodynamically, two-dimensional, incompressible and steady-state. The working fluid is air, flowing between two parallel plates. The equations obtained from developing Navier-Stokes and energy equations are solved numerically according to different orders of Knudsen number, with second-order velocity slip and temperature jump boundary conditions. The effects of thermal creep has been ignored. Tempreture and velocity fields are obtained and estimated for both constatnt heat flux and constant wall tempreture. The effects of roughness height, space between roughness elements, roughness elements length, Re number and Kn number on slip behavior of gas flow are investigated.The results indicate considerable effect of viscous dissipation and roughness on fluid flow and heat transfer in microchannel.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb