Search published articles


Showing 12 results for Strength

D. Mostofinejad,
Volume 20, Issue 1 (7-2001)
Abstract

The paper presents the results of casting and testing of 264 GFRC specimens. The glass fibers were 25 mm long, with the aspect ratio (L/D) ranging between 1250 and 3570. The parameters studied were the ratio (by weight) of fibers to cement, i.e. F/C=0%, 1.5%, 3%, and 4.5%, and the ratio of coarse to fine aggregates (gravel to sand), i.e. G/S=1.1, 0.7 and 0.2. In total, 12 mix designs were selected for GFRC specimens while the water-cement ratio was constant and equal to W/C=0.4. The balling of glass fibers in the mix was overcome by using adequate and sufficient antistatic agents. The specimens were tested under compressive, tensile and flexular loading at the ages of 7 and 28 days. Furthermore, the modulus of elasticity and the absorption of the concretes were determined. Finally, the mechanical and physical properties of the GFRC specimens were analysed and an empirical expression describing the modulus of elasticity of the GFRC was proposed.
F. Nateghi-A and N.a. Hosseinzadeh,
Volume 20, Issue 2 (4-2001)
Abstract

This paper presents a methodology for the assessment of ductility and strength capacities in low-rise buildings. This method utilizes the characteristics of force-displacement for the lowest story level or considers the weakest story in any given low-rise building for its primary analysis. Calculations are based on two levels of earthquake motions, namely strong earthquakes (PGA=0.3 g), and very strong earthquakes (PGA=0.45). Failure mechanism for the structure is established based on three criteria which are: a) bending mode, b) shear mode, and c) shear-bending mode. Evaluation is then performed using a five step procedure starting with a: modeling the building, b) developing the non-linear properties of the model, c) strength calculations, d) ductility calculations, and finally, e) assessing the safety of the building under consideration. All these evaluations are performed based on a matrix format, which simplifies the whole procedure. Developed equations and step-by-step procedure are presented and described in this paper Satisfactory results are obtained from the use of the method developed. Keywords: Strength, Ductility, Failure mechanism, Low-Rise R. C. Buildings
S. M. Haeri, N. Sadati and R. Mahin-Rousta,
Volume 20, Issue 2 (4-2001)
Abstract

In this research, behaviour of clayey soils under triaxial loading is studied using Neural Network. The models have been prepared to predict the stress-strain behaviour of remolded clays under undrained condition. The advantage of the model developed is that simple parameters such as physical characteristics of soils like water content, fine content, Atterberg limits and so on, are used to model the stress-strain behaviour of clays under triaxial loading, without performing exact and time-consuming tests on samples. Results from the network show that neural network is a good tool for prediction of stress-strain behaviour of clayey soils using simple physical characteristics of such soils
M. Shamanian, A. Saatchi, M. Salehi and T. H North,
Volume 21, Issue 2 (1-2003)
Abstract

The metallurgical and mechanical properties of Ti6Al4V/(WC-Co) friction welds have ben investigated. The microstructure close to the bondline comprised a mixture of acicular and equiaxed α plus β phases. The diffusion of elements in the welded specimens has been detected. The fracture strengths of Ti6Al4V/(WC-Co) friction welds markedly improved when the cobalt content in the (WC-Co) carbide substrate increased. During the three-point bend testing of Ti6Al4V/WC-6wt.%Co welds, the crack initiated at the bondline region at the periphery of the weld and then propagated into the brittle (WC-6wt.%Co) substrate, while with the Ti6Al4V/WC-11 wt.%Co and Ti6Al4V/WC-24wt.%Co welds, the crack initiated and propagated at the bondline region. Keywords: Friction welding, Ti6Al4V alloy, Cemented tungsten carbide, Microstructure, Fracture strength
H. Ghiassian and G. R. Poorebrahim,
Volume 23, Issue 2 (1-2005)
Abstract

Triaxial consolidated drained, unconfined compression, and CBR tests have been conducted in order to study the stress-strain, strength, and volume change characteristics of fine sand specimens reinforced by polymeric fibers made from carpet wastes. The variables are aspect ratio (length/width) and weight percentage of the fibers. The results indicate that the peak strength and total volume change of reinforced specimens increase whereas the maximum elastic modulus decreases as the fiber content increases. The rate of increase in the peak strength and total volume change, however, diminishes with increasing the fiber content. The effect of increase in the aspect ratio on results is similar to that of the fiber content.
D. Mostofinejad and M. Reisi,
Volume 24, Issue 1 (7-2005)
Abstract

Silica fume has been largely used in concrete in recent decades due to its effect on improvement of strength and durability of concrete. On the other hand, attention has been recently paid to the use of limestone powder as a substitute for part of cement in concrete, basically because of its low price and its positive effect on the durability of concrete. The aim of the current study is the investigation of the interactive effect of silica fume and limestone powder on the compressive strength of concrete and the optimization of the mix design. To do so, 27 mix designs including 3 water-to-cementitious materials ratios (W/CM=0.25, 0.3 and 0.4) 3 silica fume-to-cementitious materials ratios (SF/CM=%0, %5 and %10) and 3 limestone powder-to-cement ratios (LP/C=%0, %15 and %30) were used and 28-day compressive strength of the cubic concrete specimens were determined. Then, the interactive effect of silica fume and limestone powder on compressive strength of concrete was investigated using isoresponse curves. Furthermore, the optimization of the mix design for concretes containing silica fume and limestone powder was carried out using “cost effective factor” (CEF) which is defined compressive strength divided by cost of concrete.
M.a.rowshanzamir and A. Jafari,
Volume 24, Issue 2 (1-2006)
Abstract

Cohesive-frictional soils are widely used in the construction of embankment structures and due to the method of construction, i.e. applying compactive efforts in the vertical direction in these cases, the occurrence of anisotropy in the soil strength and permeability seems to be inevitable. In this study, attempts have been made to evaluate the shear strength of c-f soils through modifying a large shear box apparatus. Conducting more than 108 direct shear tests, the effects of compaction method and moisture on the shear strength anisotropy of a selected c-f soil (a clayey sand) have then been investigated. According to the test results, firstly strength anisotropy was observed in all the soil specimens and the shear strength in the vertical direction was about 14% to 21% higher than that in the horizontal direction. Secondly, it was found that an increase in the compaction moisture led to an increase in the degree of anisotropy. Furthermore, the anisotropy in the cohesive strength was more pronounced in the specimens with a moisture content higher than the optimum one. The highest degree of anisotropy was observed in the specimens compacted by impacting effort and the lowest one belonged to those with the vibratory compaction.
D. Mostofinejad and M. Hoseinian,
Volume 25, Issue 2 (1-2007)
Abstract

It is well known that the characteristics of concrete components greatly affect the durability of high strength/high performance (HS/HP) concrete against frost action. Undoubtedly, precise recognition of this relationship leads to appropriate selection of the type and proportions of concrete components in any particular project. In the current study, the aim is to investigate the possibility of developing some mathematical-experimental models to explain the frost resistance of high-performance concrete, regarding the role of some of its main components. To do so, the effects of four key elements, i.e. water, silica fume, coarse aggregate, and number of freeze-thawing cycles, were studied on the frost resistance of HS/HP concrete were studied. 24 concrete mix designs including 3 ratios of water to cementitious materials, i. e. 0.4, 0.3, and 0.25 4 ratios of silica fume to cementitious materials, i.e. 0, 5, 10, and 15 percent and 2 types of coarse aggregates, i. e. Limestone and Quartzite were utilized for HS/HP concrete. Overall, about 432 concrete cubes were cast, cured and tested under freeeze-thaw cycles. Finally, some models were proposed for describing the frost resistance of high strength concrete.
M. Sheikhi and H. Haji-Kazemi,
Volume 25, Issue 2 (1-2007)
Abstract

Jacketing of reinforced concrete columns is a common and useful strengthening method. This method substantially improves mechanical properties of the column, such as flexural strength as well as shear and ductility. In this paper, the behavior of confined reinforced concrete columns are investigated. The results indicate that the method is more effective for slender columns in the region of their failure zone.
M. Naderi and S. A. K. Mousavi,
Volume 26, Issue 1 (7-2007)
Abstract

Deterioration of concrete, which is mainly due to ignorance of environmental and service conditions, causes considerable costs for the construction industry. With this in mind, in this paper, results of investigation into the major causes of concrete deterioration in the Urumie Lake are presented. For the purposes of this investigation, samples were obtained by mixing two types of cement (OPC types 1&2), micro silica, anti oxide, water proof and air entraining agent, with different w/c ratios and tested at the ages of 7,14, and 28 days. In addition to compression strength, tensile strength of the samples was measured. Regarding the durability studies, abrasion resistance, electrical resistivity, chloride penetration, water absorption and freeze-thaw tests were carried out under both laboratory and real conditions in the Urumieh lake. Based on our findings recommendations are made about optimum w/c ratio, most suitable types of cement, optimum percentage of micro silica content, and additive .
K. Tourani, . R. Mahboubi, E. Seyedi Hosseininia,
Volume 35, Issue 1 (9-2016)
Abstract

Although a significant portion of conditions encountered in geotechnical engineering, for investigating engineering behavior of soil, involves unsaturated soils; the traditional analysis and design approach has been to assume the limiting conditions of soils being either completely dry or completely saturated. In unsaturated soils the capillary force produce attractive forces between particles. Discrete Element Method (DEM) is an appropriate tool to consider the capillary effects. The calculations performed in DEM is based on iterative application of Newton’s second law to the particles and force-displacement law at the contacts. In the present study, the behavior of unsaturated soils in pendular regime is simulated utilizing DEM. Triaxial  compression tests were modeled as two-dimensional, considering capillary force effects. Finally, capillary effects on Macro parameters of a simulated granular soil (stress, axial strain, volumetric strain and void ratio) and Mohr Coulomb failure criteria parameters were studied.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb