Search published articles


Showing 3 results for Temperature

M.r. Bannazadeh, A. A. Bidokhti, M. Kherandish and H. F. Hosseini,
Volume 21, Issue 1 (7-2002)
Abstract

Observations of the Caspian Sea during August-September 1995 are used to develop a three-dimensional numerical model to be used in calculating temperature and current. The model has variable grid resolution and horizontal smoothing that filters out small scale vertical motion. Data from the meteorological buoy network on the Caspian Sea are combined with routine observations at first-order synoptic station around the lake to obtain hourly values of wind stress and pressure fields. The hydrodynamic model of the Caspian Sea has 6 vertical levels and a uniform horizontal grid size of 50 km. The model is driven with surface fluxes of heat and momentum derived from observed meteorological data. The model was able to reproduce all the basic features of the thermal structure in the Caspian Sea and larger-scale circulation patterns tended to be anticyclone, with anticyclone circulation within each sub-basin. The results matched observation data. Keywords: Circulation, Temperature, Numerical model, Vorticity, wind stress
D. Mostofinejad, O. R. Barani and M. Saadatpour,
Volume 23, Issue 1 (7-2004)
Abstract

In the Present study, attempt will be made to propose a new method for prediction of long-term essential creep of concrete utilizing some short-term creep tests under high temperature. To do so, regarding the similarities between essential creep of concrete and creep in viscoelastic materials, the time–temperature equivalence relation in viscoelastic materials is evaluated for concrete. This relation states that experimental curves of creep at different temperatures fit into a single curve when shifted along the axis of logaritmic time. To develop the model, an equation was first developed taking into account the effect of temperature and the maturity of concrete. Then, an appropriate method was proposed for transmission of the creep curve of concrete under a specific temperature to fit in the creep curve of the same concrete under a temperature. The proposed model was verified using existing experimental data which very good agreement was observed.
R. Hosseini, M. Vaziri, and M. Bidi,
Volume 24, Issue 1 (7-2005)
Abstract

In this paper, the Radiation Transfer Equation(RTE) for a non-gray gas between two large parallel planes has been solved and the temperature distribution obtained. With the RTE, solution heat fluxes are also determined. Since and are two components of most combustion products, the problem has been solved for these two gases. The results were, whenever possible, compared with data reported elsewhere. Since the simulation of exact absorbing bands has been used, it can be claimed to be relatively close to exact solution. From the results otained, it can be maintained that treating, the above mentioned gases as a gray gas could cause considerable errors in the determination of temperature distribution and heat fluxes. The error would be more for water vapour than for carbon dioxide.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb