Search published articles


Showing 2 results for Snap-Through

K. Abedi, M.r. Sheidaii,
Volume 26, Issue 1 (7-2007)
Abstract

Considering the vulnerability of double-layer grid space structures to progressive collapse phenomenon, it is necessary to pay special attention to this phenomenon in the design process. Alternate path method is one of the most appropriate and accepted methods for progressive collapse resistant design of structures. Alternate Path Method permits local failure to occur but provides alternate paths around the damaged area so that the structure is able to absorb the applied loads without overall collapse. Following the sudden initial local failure event, severe dynamic effects may arise which should be taken into account in determining the realistic collapse behavior of the structure. In this paper, a new methodology based on alternate path method is presented to apply dynamic effects of initial local failure. The method is called nonlinear dynamic alternate path method. Due to its capability to take account of dynamic nature of the failure, this method can be used to evaluate realistic collapse behavior of the structure and to investigate the vulnerability of the structure to progressive collapse phenomenon.
A. Firouzian-Nejad, S. Ziaei-Rad, M. S Taki,
Volume 34, Issue 2 (1-2016)
Abstract

Having two stable configurations and no need to any permanent energy sources for remaining in each of these stable states, bi-stable composite plates have gained many applications. This paper has concentrated on control and dynamic response of cross ply bi-stable composite plates (0.90). To do this, using Hamilton principle , Rayleigh-Ritz method, and a MATLAB programme specifically designed for this study, have been applied in order to extract  the governing equation of motions in plates. Then, in order to control the large vibration of the cross ply bi-stable plate, a fuzzy controller was proposed using a fuzzy logic and its prformance was simulated by Simulink in Matlab environment. In order to simulate the real conditions on the controller performance, the effect of disturbances and time delay on the responses of controller were also investigated.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb