جستجو در مقالات منتشر شده


8 نتیجه برای نانوسیال

احمدرضا رحمتی، رضا حاج زمان،
دوره 35، شماره 2 - ( 11-1395 )
چکیده

در این تحقیق برای اولین بار انتقال حرارت جابه‌جایی طبیعی نانوسیال آب- اکسید آلومینیوم با خواص ثابت و متغیر در محیط متخلخل مربعی شکل با استفاده از روش شبکه بولتزمن بررسی می‌شود. دیواره‌های افقی محفظه عایق بوده و دیواره عمودی سمت چپ گرم و دیواره عمودی سمت راست سرد است. مطالعه در اعداد رایلی 103، 104، 105، 106، اعداد دارسی 2-10، 4-10، ضرایب تخلخل 4/0، 6/0، 9/0 و کسر حجمی نانوذرات 0، 01/0، 02/0، 03/0 انجام شده است. به‌منظور درنظر گرفتن اثر محیط متخلخل از مدل دارسی- فورشیمر استفاده شده است. نتایج نشان می‌دهد حضور محیط متخلخل سرعت نانوسیال و در نتیجه قدرت جریان را کاهش می‌دهد. با کاهش عدد دارسی و ضریب تخلخل انتقال حرارت جابه‌جایی طبیعی ضعیف شده و رفتار جابه‌جایی طبیعی نانوسیال به هدایت حرارتی نزدیک می‌شود. با افزایش عدد رایلی قدرت جریان در محفظه زیاد می‌شود و باعث افزایش عدد ناسلت متوسط خواهد شد. در همه موارد مورد مطالعه افزایش کسر حجمی نانوذرات موجب بهبود در انتقال حرارت می‌شود. در مدل خواص ثابت با افزایش کسر حجمی نانوذرات مقدار عدد ناسلت متوسط بیشتر از مدل خواص متغیر افزایش پیدا می‌کند. نتایج نشان می‌دهد روش شبکه بولتزمن توانایی شبیه‌سازی جریان در محیط‌های متخلخل را دارد.


احسان ابراهیم‌نیا بجستان، حمید نیازمند نیازمند،
دوره 36، شماره 1 - ( 6-1396 )
چکیده

در این مقاله شبیه‌سازی عددی جریان و انتقال حرارت نانوسیال اکسید آلومینیوم/ آب، در سه هندسه مختلف لوله مستقیم، لوله دارای خم °90 و لوله دارای خم °180 تحت شرایط شار حرارتی دیواره ثابت انجام‌ شده است. معادلات انرژی و ناویر- استوکس تراکم‌ناپذیر و آرام با درنظر گرفتن مدل تک ‌فاز برای نانوسیال، در یک سیستم مختصات منطبق بر جسم با استفاده از برنامه نوشته شده توسط نویسندگان بر مبنای روش حجم‌کنترلی حل شده‌اند در حالی که تمام خصوصیات ترموفیزیکی نانوسیال تابع دما درنظر گرفته شده‌اند. اثر کسرهای حجمی‌ مختلف نانوذرات و همچنین نیروی گریز از مرکز برروی میدان دما و فشار مورد مطالعه قرار گرفته ‌است. تطابق نتایج عددی با داده‌های آزمایشگاهی موجود، بیانگر صحت مدل‌سازی عددی به‌کار رفته برای شبیه‌سازی جریان و انتقال حرارت داخل لوله خمیده و همچنین صحت مدل تک ‌فاز ارائه شده برای نانوسیال است. با توجه به نتایج به‌دست آمده، وجود لوله خمیده و همچنین استفاده از نانوسیال‌ها باعث بهبود چشم‌گیر مشخصه‌های انتقال حرارت می‌شوند، در حالی‌که افت فشار قابل توجهی نیز ایجاد می‌کند. نتایج نشان می‌دهند که برای شرایط بهینه عملکرد نانوسیال، متغیرهای مختلفی چون افزایش انتقال حرارت و افت فشار را باید به‌صورت هم‌زمان مدنظر قرار داد. در انتها روشی برای انتخاب نانوسیال و هندسه مناسب برای کاربردهای خاص ارائه شده است.

فرزاد بازدیدی‌طهرانی، سید‌ ایمان واصفی، امیرمسعود انواری،
دوره 36، شماره 2 - ( 12-1396 )
چکیده

در این پژوهش، جریان جابه‌جایی آشفته نانوسیال آب و اکسید مس در یک کانال قائم به‌صورت عددی مورد بررسی و تحلیل قرار می‌گیرد. جهت مدل‌سازی جریان فاز سیال به‌صورت پیوسته درنظر گرفته می‌شود، در حالی که نانوذرات به‌صورت فاز گسسته در سیال پایه پخش شده‌اند. نحوه پخش نانوذرات اکسید مس در سیال پایه در شرایط جریانی مختلف مطالعه می‌شود تا مکانیزم‌های مؤثر بر توزیع نانوذرات در مقطع کانال مشخص شود. نتایج مبین این نکته است که در شرایط جریان جابه‌جایی آشفته و در ناحیه کاملاً توسعه یافته اثر پدیده ترموفورسیس بر حرکت براونی نانوذرات غلبه کرده و از این‌رو تجمع ذرات در نواحی مرکزی کانال بیشتر است. اما در ناحیه ورودی که لایه مرزی به‌طور کامل شکل نگرفته است، توزیع نانوذرات یکنواخت‌تر است. همچنین افزایش کسر حجمی نانوذرات به افزایش نوسانات سرعت آشفتگی در نواحی نزدیک به دیواره کمک کرده و این اثر متقابل موجب بهبود بیشتر انتقال حرارت در جریان آشفته نسبت به جریان آرام می‌شود.

امین رضا نقره آبادی، رضا میرزایی، محمد قلم باز،
دوره 38، شماره 1 - ( 5-1398 )
چکیده

رفتار بسیاری از سیالات را میتو راه‏‌های زیادی برای حل معادلات دیفرانسیل وجود دارد که شامل روش‏‌های تحلیلی و عددی می‌شود. با این وجود حل بسیاری از معادلات دیفرانسیل مرتبه بالای بد وضع هنوز یک چالش اساسی به‌شمار می‏‌آید. معادلات دیفرانسیل حاکم بر نانوسیالات ویسکوالاستیک در مرزهای سیستم به‌طور عمومی بد وضع بوده و حل عددی آنها با چالش‏‌های جدی مواجه است. از طرفی وجود نانوذرات در ابعاد بسیار ریز (زیر 100 نانومتر) باعث ایجاد پدیده‌‏های انتقال حرارت و جرم جدید شده که بر پیچیدگی رفتار نانوسیالات ویسکوالاستیک می‏‌افزاید. بنابراین، ایجاد و یا گسترش روشهای تحلیلی یا نیمه‎ایجاد و  یا گسترش روشهای تحلیلی یا نیمهتحلیلی برای حل معادلات حاکم بر این نوع نانوسیالات امری ضروری است. در پژوهش حاضر، در یک ایده جدید و با استفاده از روش‏‌های بهینه‏‌سازی هوشمند، روش جدیدی برای حل معادلات دیفرانسیل حاکم بر نانوسیالات ویسکوالاستیک ارائه شده است. با استفاده از بهینه‏‌سازی هوشمند سعی بر آن است تا با تغییر یک ایده ابتدایی به‌سوی جواب بهینه حرکت کرد که هم معادلات حاکم و هم شرایط مرزی را به‌خوبی ارضا کند. نتایج به‌دست آمده حاکی از توانایی و دقت بسیار خوب روش ارائه شده در حل معادلات دیفرانسیل مرتبه بالای حاکم بر نانوسیالات ویسکوالاستیک است.
حسن بازای، احمد آذری، مصطفی مشتاق،
دوره 38، شماره 1 - ( 5-1398 )
چکیده

هدف این مقاله، مطالعه عددی مشخصه‌های انتقال حرارتی و جریان نانوسیالات درون میکروکانال استوانه‌ای با سطح مقطع‌های مستطیلی، مثلثی و دایره‌ای و همچنین مقایسه سیال پایه آب و دی‌اتیلن ‌گلایکول است. اندازه و شکل این مقطع‌ها تأثیر قابل‌توجهی روی عملکرد گرمایی  و هیدرولیکی مبدل حرارتی میکروکانال دارد. نانوسیالات استفاده ‌شده در این تحقیق شامل آب و دی‌اتیلن ‌گلایکول به‌‌عنوان سیال پایه و نانوذرات شامل  SiO2، Cu، Al2O3  و   CuO است.برای حل مسئله و استخراج داده‌های مورد نیاز یک شبیه‌سازی سه‌بعدی برای میکروکانال با استفاده از نرم‌افزار  ANSYS FLUENT 15.0   انجام شد و تأثیر شکل سطح مقطع جریان سیال و نوع نانو سیالات استفاده ‌شده، روی پارامترهای انتقال حرارت و جریان سیال بررسی شد. از نتایج به‌دست ‌آمده در این تحقیق، مشاهده می‌شود که با افزودن نانوذرات به سیال پایه میزان انتقال حرارت و افت فشار افزایش پیدا می‌کند. همچنین نتایج نشان می‌دهد که کانال‌های مستطیلی بهترین عملکرد را در بین سه هندسه بررسی‌ شده دارا است و بدترین عملکرد مربوط به کانال‌های مثلثی است زیرا میزان ضریب انتقال حرارت جابه‌جایی در کانال‌های مستطیلی و دایره‌ای به‌ترتیب 19/26 و 10/88 درصد بیشتر از کانال‌های مثلثی گزارش شده است و در پایان، سیال پایه دی‌اتیلن ‌گلایکول به‌جای آب در یک دبی یکسان استفاده شد و مشخص شد که عملکرد سیال پایه آب به‌مراتب بهتر از دی‌اتیلن ‌گلایکول است به این ترتیب که ضریب انتقال حرارت جابه‌جایی برای سیال پایه آب در غلظت سه درصد نانوسیال  Al2O3  به‌میزان 80 درصد بیشتر از سیال پایه دی‌اتیلن گلایکول به‌دست آمد. 

حمید محمدیون، محمد محمدیون، محمدحسین دیبایی بناب، محسن دارابی، سیدرضا حجازی، وخید جانی پور بیدسردره،
دوره 39، شماره 1 - ( 6-1399 )
چکیده

در این تحقیق، دمای بی‌بعد و تولید آنتروپی در جریان سکون شعاعی نانوسیال تراکم‌ناپذیر روی استوانه نامحدود درحالت پایا بررسی شده است. جریان آزاد نیز پایا بوده و قدرت اولیه جریان K    است. حل تشابهی معادلات ناویر استوکس و معادله انرژی دراین مساله ارائه شده است. این معادلات، با استفاده از تبدیلات مناسبی که در این تحقیق معرفی شده است ساده‌سازی شده‌اند. معادلات کاملا تشابهی در شرایطی حل شده‌اند که دیواره استوانه تحت تاثیر شار حرارتی ثابتی قرار دارد. کلیه حل‌های فوق برای محدوده اعداد رینولدز  Re=ka^2/2vf بین 0/1تا 1000 و مقادیرمعینی ازکسر حجمی نانوذرات ارائه شده است که در آن    a شعاع استوانه است و  vf   لزجت سینماتیکی سیال پایه است. نتایج نشان می­دهند برای اعداد رینولدز بررسی شده، با افزایش کسر حجمی نانوذرات، عمق نفوذ مؤلفه محوری میدان سرعت کاهش می‌یابد درحالی که عدد ناسلت افزایش می­یابد همچنین بیشترین مقدار آنتروپی تولیدی محاسبه شده است.
 
احمدرضا رحمتی، احسان کاشی،
دوره 40، شماره 2 - ( 11-1400 )
چکیده

در مقاله حاضر، یک مدل شبکه بولتزمن دوفازی با درنظر گرفتن نیروهای بین ذرات نانوسیال درنظر گرفته شده است. با درنظر گرفتن نانوسیال آب-اکسید آلومینیوم در یک محفظه به‌همراه تولید حرارت داخلی، انتقال حرارت جابه‌جایی آزاد مورد بررسی قرار گرفته است. برای فهمیدن مکانیزم بهبود انتقال حرارت در نانوسیالات در مقیاس ذرات، از روش شبکه بولتزمن به‌دلیل مزیت­های منحصر به‌فردی که این روش دارد، استفاده شده است. با درنظر گرفتن یک مدل دوجزئی شبکه بولتزمن، بهبود انتقال حرارت نانوسیالات با درنظر گرفتن نیروهای موجود بین ذرات نانو و سیال پایه، بررسی شده است. تأثیر نیروهای بین ذرات، درصد حجمی نانوذرات (0-0/05)  و عدد رایلی داخلی و خارجی (106-103) در انتقال حرارت نانوسیال و پخش ذرات درون هندسه مورد نظر، بررسی شده است. نتایج نشان می­‌دهد که عدد ناسلت متوسط با افزایش درصد حجمی نانوذرات و عدد رایلی افزایش پیدا می­‌کند. اضافه شدن تولید حرارت داخلی به سیال پایه یا نانوذرات به‌صورت جدا بررسی و مقایسه شده­‌اند.  مشخص شد که درنظر گرفتن تولید حرارت داخلی در سیال پایه باعث تغییر بیشتری در میدان دما و درنظر گرفتن آن در نانوذرات باعث تغییر بیشتر در میدان جریان می­‌شود.
 
پرویز گیلاوند، حمیدرضا حیدری،
دوره 40، شماره 2 - ( 11-1400 )
چکیده

در این مقاله، تاثیر نانوسیال آب-اکسید‌آهن (Fe3O4) بر انتقال حرارت یک کانال در حضور میدان مغناطیسی متغیر عمود بر جریان، با ایجاد موانع به‌صورت محوری با استفاده از مدل تک‌فازی مخلوط مطالعه می‌شود. اثرات میدان مغناطیسی با نوشتن کدهایی به معادلات حاکم بر فروسیال اضافه شده و هندسه مسئله در نرم‌افزار Gambit 2.4 تولید و شبکه‌بندی می‌شود. شبکه حاصل به‌صورت سه‌بعدی تشکیل شده و معادلات دیفرانسیل غیر‌خطی حاکم بر مسئله نیز بر‌اساس روش حجم محدود با کمک نرم‌افزار فلوئنت تحلیل می‌شود. همچنین اثر پارامترهایی نظیر اثر موانع در مسیر جریان، عدد بی‌بعد شدت میدان مغناطیسی و عدد بی‌بعد رینولدز بر انتقال حرارت مطالعه شده است. نتایج نشان می‌دهد، ایجاد موانع در مسیر جریان باعث اغتشاش در جریان سیال شده، که این اغتشاش باعث افزایش انتقال حرارت کلی می‌شود. همچنین اعمال میدان مغناطیسی بر نانوسیال مغناطیسی سبب نفوذ لایه مرزی خنک در قسمت‌های مرکزی کانال شده و با افزایش شدت میدان مغناطیسی نفوذ این لایه نیز افزایش می‌یابد. در نتیجه مقدار عدد ناسلت و انتقال حرارت افزایش یافته که این بهبود انتقال حرارت و عدد ناسلت با افزایش عدد رینولدز بیشتر می‌شود.

صفحه 1 از 1     

کلیه حقوق این وب سایت متعلق به روشهای عددی در مهندسی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Computational Methods in Engineering

Designed & Developed by : Yektaweb

64579f77e436cd7