تولید کاروتئونید از آب پنیر توسط مخمر قرمز رنگ رودترولا آکتیوروم

چگینه کاروتئونیدها از مهم‌ترین رادیکال‌های مصرف‌کننده طبیعی محسوب می‌شوند. در واحد این استفاده از کاروتئونیدها با مانشی‌های میکرو‌بیولوژیکی به عنوان دارنده‌ای از حیوانات پرورشی می‌پذیرند. در دو دهه اخیر استفاده از کاروتئونیدها یا مانشی‌های میکرو‌بیولوژیکی به عنوان دارنده‌ای از حیوانات پرورشی می‌پذیرد. در این مطالعه، ا热情ه کاروتئونید با نوپاها صرف‌آورده به دو تیم جداسازی شده‌اند. اطلاعات موجود در مزینی تولید کاروتئونیدها به یکسانه با استفاده از سوپرسنتیوی استریز یا لب، از جمله آب پنیر گاز شده است. در این تحقیق یک سوپریس‌آورده مخمر فرآیند کاروتئونید به نام رودترولا آکتیوروم از شیره درختان توس منتقله ماسه صال طاقان جداسازی گردید و توسط آزمون‌های میکروسکوپی، ماکروسکوپی و بیوشیمیایی شناسایی شد.

نتایج نشان داد که مخمر جداسازی شده نوپاها صرف‌آورده و رودترولا آکتیوروم را تواناست دارا می‌باشد. ارزیابی شرایط مطلوب کشت مقدار مکزیمم پیروی و کاروتئونید را با تریپ معادل ۱۱/۸۹ و ۹/۸۳ بیو‌آمید شد. ضمناً اکسحلورهای عصاره کاروتئونیدی، استخراج شده از این مخمر، مؤثر حذف بنکم‌ها و نرولین و گلوتروید، به عنوان کاروتئونید‌های اصلی تولید شده در توجه به این که آب پنیر یکی از فراورده‌های جایگزینی صنایع پنیر اصلی است، باید مطالعه در حال حاضر اکثریت به مصرف و پاتولوژی‌های محیط زیست می‌شود. استفاده از این ماده در تولید مواد با ارزشی چون کاروتئونیدها می‌تواند از اهمیت شایانی برخوردار باشد.

و از های کلیدی: کاروتئونید، رودترولا آکتیوروم، آب پنیر

مقدمه

تشکیل رنگ‌های کاروتئونیدی یکی از خصوصیات جنسی رودترولا آ است (۳ و ۴). بنابراین اینها با دو کاروتئونید

1. به ترتیب استندرال، دانشجوی سابق کارشناسی ارشد و دانشیار زیست‌شناسی، دانشکده علوم، دانشگاه اصفهان
2. Rhodotorula
3. Beta carotene
4. Torulene
5. Torularhodin
مواد و روش‌ها

جداسازی مخمرها

شیب‌های درختان توس منطقه‌ای ماسه‌ی جال و زرد که از روش‌های دهده طالقان واقع در شهرستان ساری‌بولاگ، از نظر خرید ثابت‌های پرتره از مخمرها کراوتونیژت مورد مطالعه قرار گرفتند. درختان در منطقه‌های سرسبز، در خاکی سطحی با شیب تند، در کار

چسب‌های طبیعی با نماد چهل چشم‌ه، به شکل تند، به دلیل وجود توده‌های بزرگ، به شیب نموده شدند. شیب‌های درختان توس درنگ‌ها و سوابعی استریل کمیته‌های شریایی، شیب و میکروفلور مخمری کراوتونیژت آنها با استفاده از محبوب‌های مناسب جداسازی و خالص سازی گردید.

شناسایی مخمرها

مخمرها جداسازی شده (باکلی‌نین سایت تا قربه؛ بعد از تهیه کشت خاکی، با استفاده از کلید شناسایی شماره‌ی 9 مورد شناسایی مخمرها پاراگرافند (7). شناسایی بر پایه آزمون‌های ماکروسکوپی، میکروسکوپی و بیوشیمی ساختار پذیرفته‌های آن مورد آماده، سایز مخصوص محدودیت آن و شیب مخمر رژیم، از جمله درختان توس، در محل زیستی وجود شیرهای ترشح می‌کند که توسط سبیاری از میکروگانیسم‌ها، از جمله مخمرها آندولا می‌گردد (3 و 9). شیب‌های درختان توس به سبب دارای بودن ترکیباتی خاص، در مورد تولید اکسیژن نوزاد می‌کند. این ماده یک اکسید کننده قوی مواد داخل سلول ماینده آزمایش است، و سبب از بین بردن عوامل مهاجم در پارازیت‌ها در محل زیستی می‌گردد. با این وجود، مخمرها تولید کننده کراوتونیژت به سبب دارای بهبود رگیزه‌ها قادerno از سبب اکسیژن نوزاد بکرایه و به صورت غرب مخمری در محل، رشد و تکثیر نمی‌کند. که گاه به عوامل زیستگاه منحصر به فردی که مخمر خاصی از جنگ شده است، ذکر گردیده‌است (3 و 16).

1. Rhodotorula lactosa 2. Rhodotorula glutinis 3. Lactobacillus helveticus
تولید کاروتئیدی از آمنیی توسط مخمر تومرزوئگ رودپترول آکتنیومی

\[
\begin{align*}
\text{MnSO}_4\cdot\text{H}_2\text{O} & = 0.5 \text{ گرم} \\
\text{ZnSO}_4\cdot\text{H}_2\text{O} & = 0.5 \text{ گرم} \\
\text{H}_3\text{BO}_3 & = 0.5 \text{ گرم} \\
\text{Fe}(\text{NO}_3)_3 & = 0.5 \text{ گرم}
\end{align*}
\]

و ۵ φ میلی

"آماده سازی، حجم‌زی فوق به میزان ۵۰ فیلتری، رنگ زمین‌کشی آبی، دمای، pH سرعت مواده و زمان کشت در سه تکرار انجام گرفت.

نتایج

جادوگرایی و شناسایی میکروفلور مخمری تولید کننده کاروتئیدی بیشتر در رنگ ۲۲۳۳ میلیمتر به گونه مخمر کاروتئیدی شامل رودیترول آکتینوم استفاده از ۵۰۰ میلی‌مترهای گونه‌های متغیر مصنوعی و ساخت شرکت IKA استفاده از دستگاه اولتراپروتئین که شکل داغ (DMSO) به شکل داغ (۲ میلی‌گرم) به مدت ۲ ساعت استفاده از حلال دیئی سولونکاریج در شرایط آنلاین با توجه به تولید کاروتئیدی تولید شده توسط پتروپروم از استخراج و

مقدار آن محاسبه گردید (۱۲، ۱۳، ۱۴، ۱۵، ۱۶).

آلاین شیمیایی ترکیبات کاروتئیدی تولیدی

طیف جذبی عصاره مخمری استخراج شده از مخمر رودپترول آکتنیوم (شکل ۱) شناسایی شد. حضور حساسیتوژی کاروتئیدی TLC در این گونه جادوگرایی شده بود و نتایج شیمیایی حساسیت با ترکیب نیترات کاروتئیدی تولید و ترولورودین و با توجه به فاکتورهای بلند در این جنس تعریز می‌باشد (جدول ۱).

بررسی اثر غلظت قند لاکتوز و سولفات آمونیوم با بررسی نفوذ غلظت ۴۷۵ عدد آنلاین تولید بیوماس محمر دامادی به بیش از آن کاروتئیدی بیشتر به ازای هر لیتر حضور اکتینی شکم می‌باشد (شکل ۲).

همچنین، غلظت دو گرم در لیتر از سولفات آمونیوم به عنوان آمین کننده منبع تیترول، مناسب بر دیده شد (شکل ۳).

1. Specord S
2. Thin Layer Chromatography
3. Sporidiobolus ruinenii

آنتی‌بیوتیک شامل ترکیبات کاروتئیدی تولیدی

کاروتئیدی استخراج شده توسط پتروپروم از ترکیب ترکیبات کاروتئیدی استخراج شده از دستگاه اولتراپروتئین پنجره در دامان طول موج ۴۰۰-۶۰۰ نانومتر مورد آنالیز قرار گرفت. به‌منظور شناسایی کلی اجزای تشکیل‌دهنده عصاره کاروتئیدی استخراج شده از تکیپیک کریمورگانی نازک لاشه روزا صحنانی از جنس سپریکشال خنثی و منیزیم اکسید و حلال پتروپروم اثر و استن به نسبت ۵۰۰ استفاده و با تغییر

باندهای با دست آمده از هر یک، نوع کاروتئیدی تولیدی شده شناسایی اولیه گردید.

بررسی اثر پاتنتر میکروبی کشت بر تولید کاروتئیدی

از آنجا که کاروتئیدی تولید شده توسط مخمر ترکیبات

Downloaded from iutjournals.iut.ac.ir at 7:48 IRST on Monday September 21st 2020
جدول ۱ - مورفولوژی مخمرهای چندانسانی و چندانسانی شده

<table>
<thead>
<tr>
<th>اطراف کلکنی</th>
<th>سطح کلکنی</th>
<th>اندازه کلکنی (mm)</th>
<th>رنگ کلکنی</th>
<th>نام مخمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>صاف</td>
<td>محدب</td>
<td>۳-۷</td>
<td>قرمز رنگ</td>
<td>رویتولا آکتوپوروم</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>آتش فشانی</td>
<td>اسپوریدیپلوس رویتینی</td>
</tr>
</tbody>
</table>

* ۶: بعد از ۵ روز در ۳۸۰ دی‌وی می‌باشد.

جدول ۲ - تأثیر تست‌های شناسایی مخمرهای چندانسانی شده

<table>
<thead>
<tr>
<th>اسپوریدیپلوس رویتینی</th>
<th>رویتولا آکتوپوروم</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نام تست</th>
</tr>
</thead>
<tbody>
<tr>
<td>مصرف هوازی قند-گلیسول</td>
</tr>
<tr>
<td>مصرف هوازی قند لیکتوز</td>
</tr>
<tr>
<td>مصرف نیترات</td>
</tr>
<tr>
<td>رشد در حضور ویتامین بی‌توین</td>
</tr>
<tr>
<td>رشد در حضور ویتامین بی‌توین</td>
</tr>
<tr>
<td>رشد در دمای ۳۰°C</td>
</tr>
<tr>
<td>W۱</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>+</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

1. ضریف

نیوی

بررسی اثر pH دما و سرعت هواده

پالاترین بیوماس تولیدی توسط مخمر در pH=۵/۵ حاصل می‌گیرد (شکل ۴)، هر چند که مخمر در حس وسیعی از pH قادیر به رشد بوده، اما در pH کمتر از ۴ به سر به محسوس قابل مشاهده

۲۸°C به طور چشمگیر کاهش می‌یابد.

۱۷۸۹
شکل 1. طیف چندی عصاره کاروتئوئید استخراج شده از رودترولا آکتیوکرین در حال پترولیوم آتر

شکل 2. اثر غلظت قند لاکتوز آب پنیر بر پیواماس تولید شده توسط مخمر
شکل ۳. اثر غلظت سولفات آمونیوم بر پیوپاماس تولید شده توسط مخمر

شکل ۴. اثر pH بر پیوپاماس تولید شده توسط مخمر

شکل ۵. اثر دما بر پیوپاماس تولید شده توسط مخمر
جدول ۳. ترکیبات کاروتئنی‌ها شناسایی شده در عصاره استخراجی شده از سلول‌های مخمری، توسط حلال پترولیوم آتربای تکنیک TLC

<table>
<thead>
<tr>
<th>نام کاروتئنی‌ها</th>
<th>λ_max</th>
</tr>
</thead>
<tbody>
<tr>
<td>پنا-کاروتئن</td>
<td>۴۵۲</td>
</tr>
<tr>
<td>ترویله</td>
<td>۴۸۵</td>
</tr>
<tr>
<td>ترویله دین</td>
<td>۵۱۵</td>
</tr>
</tbody>
</table>

جدول ۴. مقایسه میزان تولید کاروتئنی توسط مخمرهای لاکتوز محیط با سوپه بیرتر جداسازی شده

<table>
<thead>
<tr>
<th>تحقیق حاضر</th>
<th>منبع ۲۰</th>
<th>منبع ۷ و ۸</th>
</tr>
</thead>
<tbody>
<tr>
<td>کاروتئن در کول تولید</td>
<td>۲۹۰ µg/g</td>
<td>۸۵/۸ µg/g</td>
</tr>
<tr>
<td>R. acheniorum</td>
<td>۲۶۸ µg/g</td>
<td></td>
</tr>
<tr>
<td>R. lactosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. glutinis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

محمر مورد استفاده

از آنجا که محمر دو روترولا آکتیوکاروتئنی یک محمر غیر تخمیری است، هواهی اثر مهمی بر رشد و تولید کاروتئنی آن دارد. از طریق، چون مقدار هواهی محیط کشت با سرعت تکان خوردان آن بر حسب دور در دقیقه رابطه مستقیم دارد، اقدام به تعیین میزان آن ۵۵ میلی لیتری گریده و برای ۲۵۰ ml مقدار ۲۵۰ دور دقیقه مناسب به نظر رسد (شکل ۴). در دیگر است، یکی از غیره، گریده‌کردن که در سرعت‌های افزایش‌اند به یافته‌ای باعث ایجاد نیروی تنش بی‌میکروگانیسم، میزان رشد کاهش می‌یابد.

بررسی اثر مدت زمان کشت آزمایش‌ها نشان داد که حداکثر پیروبوماس تولیدی به توسط این محمر در روز چهارم به دست می‌آید (شکل ۷) و به دنبال آن کاهش جزئی در مقدار پیروبوماس (شکل ۸) و افزایش تدریجی در کاروتئنی سول. باعث می‌شود که کاروتئنی تولید شده در محیط کشت در روز پنج‌شانه مقدار خود را دارا باشد (شکل ۸ و ۸).

بحث و نتیجه‌گیری

در تحقیق حاضر مشخص شد که محمر قرمز رنگ روترولا

1. Phaffia rhodozyma
شکل ۶. اثر سرعت هوادی بر بیوماس تولید شده توسط مخمر

شکل ۷. اثر مدت زمان کشت بر بیوماس تولید شده توسط مخمر
شکل 8. تأکید بر این می‌باشد که میزان مصرف ماده خامه‌ای در مدت شش روز (الف) نمودار یوموس تولیدی (g/ℓ) (ب) نمودار کاروتئید تولیدی (g/g) (ب) نمودار کاروتئید تولیدی (g/g)

آستانه ناحیه‌ایی که از مناطق دیگری از دنیا گزارش شده است (۲۳ و ۲۴) مورد بررسی قرار گرفت.

سیاست‌گذاری

به دنبال وسیله‌ای بر اساس مهندس سید علی خانی و مهندس،

گرایشی از ایجاد چهار سازمانی در کشور مشترکان و

