اثر تراکم بوته و مرحله فنولوزیک برداشت بر عملکرد روح و پروتين کوشی (Kochia scoparia L. Schrad) در شرایط آبیاری با آب شور

سید مسعود ضیایی، محمد کافی، جواد شاه‌نگه، حمید رضا خواهی و محمد رضا سلمانی

(تاریخ دریافت: 1487/7/12، تاریخ پذیرش: 1488/2/13)

چکیده

به منظور بررسی اثر تراکم بوته و مرحله فنولوزیک برداشت بر عملکرد روح و پروتين کوشی آزمایش بهصورت کرت‌های تصادفی در سه نت‌کار در مزرعه تحقیقات شوری اصفهان کشاورزی دانشگاه فردوسی مشهد در پهنا سال 1386 اجرا شدند. اثر تراکم بوته در جهت اصلی تراکم بوته در چهار سطح 0، 10، 20 و 30 بوته در متونی بود و در کرت فرعی برداشت در دو مرحله (رسته سیگما کاملاً و 50 درصد زمین) ثبت گردید. اثر تراکم بر عملکرد دانه، وزن هزار دانه، شاخص برداشت، درصد و عملکرد روح و عملکرد پروتئین در مرحله رسته سیگما معنی‌دار (P<0.05) گردید. در مرحله گلدهی نیز اثر تراکم بر عملکرد علوفه و عملکرد پروتئین معنی‌دار نبود. در نتیجه نشان داد که تفاوت معنی‌داری بین عملکردهای ماده و خشک، درصد و عملکرد پروتئین بین مرحله رسته‌گذاری کامل و گلدهی وجود داشت. پیشرفت عملکرد دانه (249 کیلوگرم در هكتار) و عملکرد روح و پروتين کوشی (738/7 کیلوگرم در هكتار) در روی اثر تراکم 20 بوته و کمترین ان مربوط به تراکم 10 بوته در متونی بود. پیشرفت عملکرد پروتئین (329 کیلوگرم در هكتار) نیز مربوط به تراکم 30 بوته در متونی بود. با توجه به نتایج بدست آمده جهت حصول حداکثر عملکرد کفی بهتر است تراکم 30 بوته در متونی استفاده شود و علوفه کوشی در زمان 50 درصد گلدهی برداشت شود. جهت تولید دانه و روح در شرایط آب و هوایی مشهد، پیشرفت تراکم 20 بوته در متونی بود.

واژه‌های کلیدی: کوشی، تراکم بوته، عملکرد روح، عملکرد پروتئین، گلدهی، رسته‌گذاری کامل

مقدمه

به شک کیکی از بزرگترین چالش‌های پیش رو انسان قرن بیست و یکم تأثیر غایبی است. رشد فراوانی جمعیت، بهره‌وری در کشورهای در حال توسعه، و افزایش نشان اقتصادی بین کشورهای جهانی از آن‌های از تا این‌جا برای حداقل شرایط حیات بیش از پیش سوی آینده این کره

1. به ترتیب دانشجوی سابق کارشناسی ارشد، استاد، کارشناسی ارشد، استادیار و دانشجوی سابق کارشناسی ارشد زراعت، دانشگاه کشاورزی، دانشگاه فردوسی مشهد

ziaee_agri85@yahoo.com

شناسه مکانیک: پست الکترونیکی: *
کوچیا اسکوریاریا (Kochia scoparia L. Schrad.) از جمله‌ای گیاهان کوشا است که اغلب در اقلیم‌های خشک و رسیدگی کامل در دشت‌ها و ولایت کرخه چنین ایستاده است.

مواد و روش‌ها

این آزمایش در بهار سال ۱۳۸۴ در مزرعه تحقیقاتی شوری قطب علمی گیاهان زراعی و پیش‌دانشگاه کشاورزی دانشگاه فردوسی مشهد (با عرض جغرافیایی ۳۵ درجه و ۱۵ دقیقه شمایلی، طول جغرافیایی ۵۹ درجه و ۲۸ دقیقه شرقی و ارتفاع ۹۸۵ متر از سطح دریا) به اجرا درآمد. متوسط بارندگی منطقه ۱۸۷ میلی‌متر و حداقل و حداکثر مطلق سالانه به ترتیب ۲۲ و ۲۷-۵/۸-۷ درجه سانتی‌گراد است.

آزمایش به صورت کرت‌های خرد شده در قالب طرح بلکه‌ای کامل تصادفی با سه تکرار جهت اندازه‌گیری عملکرد ماده خشک و درصد و عملکرد برخورداری، عملکرد دانه، وزن هزار دانه، عملکرد دانه و درصد و عملکرد خشک و رسیدگی کامل در کرت‌های اصلی تراکم بونه در چهار سطح (۱۰۰، ۲۰۰، ۳۰۰ و ۴۰۰ بونه در متر مربع) در کرت‌های فرعی برداشت و ۵ درصد کل دانه به مرحله تولید علف‌کش و رسیدگی کامل به‌منظور تولید دانه و علف‌کش قرار گرفتند.

شوری و خشک‌کشی است.

از خانواده کوشاوارانی است. کوشا از جمله مصرف‌های معروف و متنوعی می‌باشد که ایجاد نموده به‌عنوان سبز، مصرف دارویی، استفاده در کشیدن زیستی‌های زینتی و جارویی، آشپزی، ایجاد چربی و مصرف علف‌های اشتهار کرد. سطح زمین خاک‌های کوشا به‌ویژه در م봉ی آب‌زیان دام‌های اهلی، کافی است (۷) تکثیر شیمیایی کوشا تئوری که در نهایت به نشانه‌های ایجاد است، نظریه‌ی میزان معدن‌های آلترنر، نظر قبل و نظر پرتنه‌های حاوی بازی است و تکثیر شیمیایی کوشا در سیستم مختلف مصرف‌های مزاحمت است و از فاصله سن کاهش، درصد خاک‌کش در سه فاصله کاهش و در بزرگ‌ترین میان‌بند ۱۳۲ برخوردار خاک کوشا بین نا ۲۶ و درصد گزارش شد است (۷). مادرید و همکاران درصد پرتنه خان کوشا بردارشتن شده در اواخر تا اواست گل‌دهی را حدود ۴/۶ درصد اعلام کردند (۸). آنالیز شیمیایی علف‌های کوشا توسط شرود نشان داد که تکثیر شیمیایی علف‌های کوشا که در مراحل قبل صورت گرفته و در مراحل پیوستن به یکدیگر کل گیاه در مرحله قبل از کاهش ۲۸ و ۳۵ درصد بود که این میزان از نهایت‌های کلی به ترتیب به ۲۴ و ۱۳/۲ درصد کاهش یافت (۱۳).

حمض نیکوکالین موجود در کرات‌های مرده در جهان و نتایج مثبت به‌دست آمده در مزارع آزمایشی از کاربرد آنها در کشاورزی، استفاده از این ماده را به عنوان یک روشکرد راهبردی در فرآیند تولید مواد غذایی مورد توجه قرار داده است (۲). استفاده از گیاهان مقاوم به شوری و خشک‌کشی یکی از راهکارهای مهم مدیریت در تولید مواد غذایی می‌باشد (۷). هالوفیت‌ها از جمله این گیاهان هستند که در طبیعت وجود دارند و بایان کننده در تولید ترکیب، هرگز و تولید گیاهان دارویی و تولید علف‌کش را دارند (۵) از جمله این گیاهان شوری پست کوشاکست که اختیار نیز
نتایج و بحث
نتایج حاصل از جدول تجزیه و ارائه در مورد عملکرد علوفه نشان داد که اختلاف معنی‌داری (P<0.05) بین سطوح مختلف تراکم و ورد داشت (جدول 2). به طوری که تراکم 30 بونه در متر مربع به دست آمده در 28 تا در هکتار علوفه خشکی بیشترین و تراکم 10 بونه در متر مربع به میانگین 15±7.34 با هر کمتر مقدار تراکم نسبت به خود اختلاف داشت (جدول 4). با افزایش تراکم تا 30 بونه در متر مربع بیشترین وزن خشکی جارود شده و 18 پس از آن، در تراکم 40 بونه در متر مربع احتمالاً به دلیل افزایش رقابت درون و بین بونه‌ها و خاصیت خودکنترلی از میزان ماده خشکی است که شده است (جدول 4). اختلاف تراکم زیاد موجب افزایش سایاعداری در پوسته گل‌های شده و از طریق ایجاد محدودیت در میزان نوری که به بونها می‌رسد، عملکرد و اجزای عملکرد را تحت تأثیر قرار می‌دهد (9).

کوشیده نیز می‌تواند به فلوئور C2, به دلیل تاثیرهای مثبت به سیستم و سیستمیک اثرات مختلف. افزایش سایاعداری و سرعت فتوسنتز، کارکردهای مصرف آب و کاهش آسیب و ریزشی را می‌تواند به شکل مثبتی به عملکرد علوفه و بهبود کیفیت مصرف‌کننده آن در محیط‌های مختلف، عوامل مؤثر بر عملکرد علوفه باشد.

عملکرد دانه پس از گرداگردن و پژوهش کاهش آن را در نظر گرفته‌ام. از این حيث، در انتخاب مناسب‌ترین گرداگردی می‌تواند بهبود در عملکرد علوفه باعث بهبود در انتخاب است.
جدول 1. نتایج تجزیه شیمایی آب و خاک مورد استفاده در اجرای آزمایش

<table>
<thead>
<tr>
<th>کاتیون‌ها و آنیون‌ها (میلی‌میلی‌متر در لیتر) و هدايت الکتریکی</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC (ds/m)</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>آب</td>
</tr>
<tr>
<td>خاک (عصاره شیمیایی)</td>
</tr>
</tbody>
</table>

جدول 2. خلاصه تجزیه واریانس (میانگین مربعات) عملکرد ماده خشک، نسبت وزن خشک برگ به ساقه و درصد پروتئین کورشی

<table>
<thead>
<tr>
<th>میانگین</th>
<th>درصد پروتئین</th>
<th>نسبت وزن خشک</th>
<th>عملکرد ماده خشک</th>
<th>درجه آزادی</th>
<th>ضریب تغییرات (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/32</td>
<td>0/011</td>
<td>0/07</td>
<td>3/22</td>
<td>3</td>
<td>7/99</td>
</tr>
<tr>
<td>4/32**</td>
<td>0/011</td>
<td>0/07</td>
<td>3/23**</td>
<td>3</td>
<td>8/99</td>
</tr>
<tr>
<td>4/32***</td>
<td>0/011</td>
<td>0/7</td>
<td>3/23</td>
<td>3</td>
<td>9/99</td>
</tr>
</tbody>
</table>

مترمیع اختلاف معنی‌دار (P ≤ 0/01) وجود داشت (جدول 2). کاملاً اختلاف معنی‌داری وجود نداشت و کمترین عملکرد ماده خشک مربوط به تراکم 10 بود در مترمیع بود (جدول 2). احتمالاً پایین بودن تراکم و عدم هرهکمی از شرایط محیطی موجود سبب پایین بودن عملکرد ماده خشک در این تراکم بوده است.

نتایج درصد پروتئین در زمان گل‌دهی نشان داد که تراکم بیشتر عملکرد پروتئین افزوده شده و این تراکم با میانگین عملکرد 2/39 نت در هکتار چهار shovel عملکرد پروتئین را دارا بود. اما کمترین عملکرد پروتئین مربوط به تراکم 0 بود در مترمیع با میانگین عملکرد 0/14 نت در هکتار بود. این اختلاف ناشی از تفاوت در ماده خشک تولید شده در تراکم‌های مختلف بود (جدول 2).

اثر تراکم پروتئین بر عملکرد پروتئین در انتهای فصل رشد و در زمان رسیدگی کامل نیز معنی‌دار بود. در تراکم 0 بود (جدول 5). بین درصد پروتئین در زمان گل‌دهی و رسیدگی
الترکم بودن و مرحله فنولوسیک برداشت بر عملکرد رونه و پروتئین

جدول 3: خلاصه نجایی واریانس (میانگین مربوطات) عملکردانه، رونه و پروتئین کوشی

<table>
<thead>
<tr>
<th>میانگین عملکرد (کیلوگرم در هکتار)</th>
<th>عملکرد پروتئین (کاله)</th>
<th>عملکرد پروتئین (ریسیدی)</th>
<th>درجه تغییرات</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>تکرار</td>
<td>0/075</td>
<td>0/079</td>
<td>0/144/0/886</td>
<td>2/276/2/33</td>
</tr>
<tr>
<td>تراکم</td>
<td>0/12**</td>
<td>0/18**</td>
<td>0/216/0/15**</td>
<td>3/0/0/04</td>
</tr>
<tr>
<td>خطا</td>
<td>0/012</td>
<td>0/011</td>
<td>0/066/0/122</td>
<td>6/0/0/04</td>
</tr>
<tr>
<td>ضریب تغییرات (درصد)</td>
<td>4/29</td>
<td>22/55</td>
<td>21/67/16/29</td>
<td>6/0/0/04</td>
</tr>
</tbody>
</table>

** و * به ترتیب معنی‌داری در سطح احتمال 1 و 5 درصد.

جدول 4: مقایسه میانگین سطوح مختلف ترکم بودن از نظر وزن خشک، عملکرد دانه، وزن هزار دانه و شاخص برداشت در مرحله رسیدگی کامل گیاه کوشی

<table>
<thead>
<tr>
<th>شاخص برداشت</th>
<th>وزن هزار دانه (گرم)</th>
<th>وزن خشک (گرم)</th>
<th>تراکم (بونه در مترمیع)</th>
</tr>
</thead>
<tbody>
<tr>
<td>تراکم 1/2</td>
<td>8/99</td>
<td>8/99</td>
<td>0/15</td>
</tr>
<tr>
<td>تراکم 0/1</td>
<td>14/0/</td>
<td>8/99</td>
<td>0/15</td>
</tr>
<tr>
<td>تراکم 0/12</td>
<td>8/99</td>
<td>8/99</td>
<td>0/15</td>
</tr>
<tr>
<td>تراکم 1/22</td>
<td>8/99</td>
<td>8/99</td>
<td>0/15</td>
</tr>
</tbody>
</table>

در هر ستون میانگین‌های دارای یک حرف مشترک در سطح احتمال 0/05 اختلاف معنی‌داری ندارند.

30 بونه در مترمیع با میانگین عملکرد 2/7 تن در هکتار گزارشگر عملکرد پروتئین را دارا بود و با افزایش ترکم از 1 به 2 40 بونه در مترمیع از میزان عملکرد پروتئین کاسته شد. گزارشگر عملکرد پروتئین نیز مربوط به ترکم 1 بونه در مترمیع با میانگین 1/3 تن در هکتار بود (جدول 3). درصد نسبت به زمان گلدهی داده شده است.

اثر ترکم بر نسبت وزن خشک برعکس به ساقه در زمان گلدهی معنی‌داری نداشت و به طوری که افزایش ترکم از 1 تن به مترمیع مربوط به افزایش نسبت وزن خشک برعکس به ساقه و تراکم 0 بونه در مترمیع با رقم 0/1 گزارشگر عملکرد پروتئین مربوط به زمان گلدهی بود که با نتایج دیگر در رابطه با بهترین عناصر افزایش وزن خشک برعکس به ساقه در زمان گلدهی و بهبود کیفیت محصول در هکتار.

642
جدول 5 مقایسه میانگین سطوح تراکم بوته برای درصد پروتئین، عملکرد پروتئین، درصد روزانه عملکرد و نسبت وزن خشک برگ به ساقه در مرحله رسیدگی کامل گیاه کوشا

<table>
<thead>
<tr>
<th>نسبت وزن خشک برگ به ساقه</th>
<th>عملکرد پروتئین (نژاد در هکتار)</th>
<th>درصد پروتئین (نژاد در هکتار)</th>
<th>تراکم بوته (بوت در متریوم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.40</td>
<td>167.54</td>
<td>12.61</td>
<td>1.40</td>
</tr>
<tr>
<td>0.35</td>
<td>149.65</td>
<td>13.94</td>
<td>1.35</td>
</tr>
<tr>
<td>0.30</td>
<td>137.34</td>
<td>14.87</td>
<td>1.30</td>
</tr>
<tr>
<td>0.25</td>
<td>125.29</td>
<td>15.74</td>
<td>1.25</td>
</tr>
<tr>
<td>0.20</td>
<td>114.45</td>
<td>16.55</td>
<td>1.20</td>
</tr>
</tbody>
</table>

در هر سنتون میانگین های دارای یک حرف مشترک در سطح احتمال 5% اختلاف معنی‌داری ندارند.

جدول 6 مقایسه میانگین سطوح مختلف تراکم بوته از نظر صفات (وزن خشک، درصد پروتئین، عملکرد پروتئین و نسبت وزن خشک برگ به ساقه) در مرحله 50 درصد گل‌دهی گیاه کوشا

<table>
<thead>
<tr>
<th>نسبت وزن خشک برگ به ساقه (بوت در متریوم)</th>
<th>عملکرد پروتئین (بوت در متریوم)</th>
<th>درصد پروتئین</th>
<th>تراکم بوته</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.40</td>
<td>167.54</td>
<td>12.61</td>
<td>1.40</td>
</tr>
<tr>
<td>0.35</td>
<td>149.65</td>
<td>13.94</td>
<td>1.35</td>
</tr>
<tr>
<td>0.30</td>
<td>137.34</td>
<td>14.87</td>
<td>1.30</td>
</tr>
<tr>
<td>0.25</td>
<td>125.29</td>
<td>15.74</td>
<td>1.25</td>
</tr>
<tr>
<td>0.20</td>
<td>114.45</td>
<td>16.55</td>
<td>1.20</td>
</tr>
</tbody>
</table>

در هر سنتون میانگین های دارای یک حرف مشترک در سطح احتمال 5% اختلاف معنی‌داری ندارند.
مترمیع اختلاف معنی‌داری دیگه نش. تراکم 100 بونه در مترمیع بیشترین یک میلیگین 139 4 درصد رونقن نشان داد که با افزایش تراکم 200 بونه در مترمیع بیشترین یک میلیگین درصد رونقن افزوده شد. احتمالاً مطول بین‌شرايط محتمل در تراکم پایین 10 بونه در مترمیع و موهان طور و وجود رقابتهای زیاد در تراکم‌های بالا دلیل مانند کاهش درصد رونقن می‌باشد. تراکم 100 بونه در مترمیع 137 بونه درصد بیشترین میزان رونقن را دارا بود (جدول 5).

نتایج نشان داد که تراکم 200 بونه در مترمیع بیشترین عملکرد رونقن (71/57 کیلوگرم در هکتار) و تراکم 150 بونه در مترمیع کمترین عملکرد رونقن (71/54 کیلوگرم در هکتار) را داشت. با افزایش تراکم از 200 بونه نسبت به تراکم 120 بونه در مترمیع بهدلیل افزایش گیاهانکاری و رونقن بهدلیل رقابتهای زیاد از تراکم‌های کمترین، بطوری که با افزایش تراکم بیشتر از عملکرد دانه کلیزا کاسته شد.

کوشیا داری بذر های بسیار روزی است ولی تعداد زیاد بذر جیرانشان در نتیجه کوکچ آنها در هر بونه است. نتایج این تحقیق نشان داد که تراکم 100 بونه در مترمیع با گرم دارای بیشترین وزن هزار دانه در بین تراکم‌های مختلف بونه بود. بین تراکم‌های 10 و 200 بونه تفاوت معنی‌داری در وزن هزار دانه پیدا نشد ولی با افزایش تراکم از وزن هزار دانه کاهش و نیز در مترمیع با نسبت به تراکم 200بونه در مترمیع کاهش وزن هزار دانه را دارا بود (جدول 6). ظاهری و وجود رقابتهای بین و درون بونه تراکم‌های بالاتر در کوشیا علت اصلی کاهش وزن هزار دانه بوده است.

نتایج حاصل از آزمایش نشان داد که تراکم 200 بونه در مترمیع با گرم دارای 1/14/11 بالاترین شاخص از پرداخت را بین تراکم‌های مورد نظر دارد و بین تراکم‌های 100 و 400 بونه در مترمیع اختلاف معنی‌داری از نظر شاخص برداشت دیده نشد (جدول 7). احتمالاً مطول بونه برداشت جهت تولید دانه در این تراکم بالا و نسبت عملکرد دانه به عملکرد بیولوژیک دیل عمدتاً این اختلاف در بین تراکم‌های مورد نظر

