پرنسی کالوسزایی و پاززاپی از کشت جنین نارس ارقام برنج

محمد زمانی دراوی و احمد ارزانتی

چکیده

تفقیه حاضر به منظور ارزیابی واکنش 18 رقم برنج (Oriza sativa L.) مشتمل بر 15 رقم برنج ایرانی و 6 رقم خارجی، برای کالوس زایی و پاززاپی گیاهیهای اکولوس پاک کشت جنین نارس نسبت به عرضه محیط کشت (LS). استفاده از اسپاههای LS MS، ورود نزدیکی مردان ارزیابی قرار گرفت، سپس با انتقال کالوسهای یلیدی از عرضه محیط کشت ذکر شده به محیط کشت بازدارنده (MSR)، و از طریق سنجش درصد گیاهیهای یلیدی شده از کالوسهای میزان پاززاپی از کشت به ویژه در کشتی گردید.

نتایج نشان داد که تفاوت معنی‌داری هم از لحاظ کالوسزایی و هم از لحاظ پاززاپی بین ارقام وجود دارد (p<0.05). در مرحله کالوسزایی، از نظر ظرفیت کالوس، ارقام 13- و 2- بهترین با معیارهای طور معنی‌داری IRFAON-36 و 33IRCTN1991 ارقام 87 و 43 از جمله میزان حداکثری گیاهیهای اکولوس را درا می‌کرد. از هر جهت، وارد ارقام شناخته شدند. به‌طور معمول، برنج این ارقام را بهتر شناخته شدند.

در مرحله پاززاری، ارقام 13- و 2- بهترین با معیارهای طور معنی‌داری IRFAON-36 و 33IRCTN1991 ارقام 87 و 43 از جمله میزان حداکثری گیاهیهای اکولوس را درا می‌کرد. از هر جهت، وارد ارقام شناخته شدند. به‌طور معمول، برنج این ارقام را بهتر شناخته شدند.

کالوسزایی و پاززاری بین محیط‌هایی کشت تفاوت معنی‌دار وجود داشت. بیشترین که از لحاظ ظرفیت کالوس، وزن تر و میزان پاززاری کالوسزایی و پاززاری گیاهیهای شناخته شدند. این کشت MS، به‌طور محیط کشت LS، رشد یافتن و یکپارچه‌سازی در محیط کشت MS، کمترین درصد آب را داشتند. محیط کشت MS، به‌طور معمول، برنج این ارقام را بهتر شناخته شدند.

واژه‌های کلیدی: برنج (Oriza sativa L.)، کشت جنین نارس، کالوسزایی و پاززاری

مقدمه

از تولید کالوس و پاززاپی آن، برای تکثیر گلوله‌های نشانه‌های محیطی زندگی و ویژگی‌های افزایش مقاومت نسبت به تنش‌های محیطی زندگی و

1. به ترتیب دانشجوی سابق کارشناسی ارشد و دانشیار اصلاح نیانس، دانشکده کارشريزی دانشگاه صنعتی اصفهان
نظر از منبعی بیگانه به گیاه زراعی استفاده می‌شود (۹۰) در
برنج‌ها تا دوباره قابل استفاده کالوس‌های موجود در
تراستفروماتوزی. از کالوس‌های حاصل از جنین
تارس موفقیت است (۶۹ و ۷۷). گونه‌های مختلف، ارقام درون
گونه، گونه به گونه مختلف گیاهی به گونه زراعی
بافت و اکتشف یکسان نشان می‌دهند (۱۰، ۲۱، ۲۵، ۳۳، ۳۷، ۴۰، ۴۱ و ۴۲).

این موضوع سبب شده است تا توانا در برنامه‌های اصلاحی
روش‌های روزمره برای نام ارقام یک گیاه زراعی به کار
برد. نتایج اولیه این روش به‌طور مثبت کالوس‌ها و
صلحیتی خاصی مЦентрی می‌باشد. در دوازده
نژاد (۱۰، ۲۱ و ۴۲) با این نمونه، در داخل مراحل گردو
برنج‌های ایندیکا و زاپیونیا، ارقم مختصر، واکنش متفاوتی
نسبت به تولید کالوس و بازایی گیاهی جهت زیادی
دارند (۱۰، ۲۱ و ۴۲). با این وجود در داخل مراحل گردو
برنج‌های ایندیکا و زاپیونیا، ارقم مختلف، واکنش متفاوتی
نسبت به تولید کالوس و بازایی گیاهی نشان می‌دهد. برخی از
پژوهشگران این گونه، تفاوت‌ها را با پس، به
اختلاف ترکیب و گیاهی هموسیستیمی در داخ، گیاه، و
نگاه‌های حساس‌سنجی به هموسیستیمی مصنوعی افروده شده به
محیط کشت نسبت به دهند (۱۰). اخیراً اگر و همکاران (۲۰)
رژن‌های وابستگی مزوتی و ژن‌های کالوس و فعالیت
آن‌ها احیا کننده یافته و ترکیبی را در بر نماید، مطالعه
قرار داده است. آنها بین محیطی به نیازی موجود در کالوس و
ابان رشد آن می‌توانست منفی ماهیت داشته و
یک ارقام با رشد صافی کالوس دارای سطوح پیامدهایی از
آن‌ها ترکیبی در مقایسه با ارقام داری در ژن‌های
محلولی هستند. علاوه بر این‌ها، گیاه‌های ترکیب مختصر،
نوع بایدکه برای تولید کالوس از آن استفاده می‌شود یک
بیاورد. در پس از کشت به گونه بی‌بافت (۱۰).

برایک اولین راه گیاه کامل برنج در سال ۱۹۶۱ به دست آمده، و
این اولین موفقیت در تک لیه‌دها بود (۲۷). کشت جنین تارس

1. Basmati 2. Methyl bromide
جدول 1. مقایسه میانگین ارقام برخی مورد مطالعه از نظر قطر کالوس و وزن تکالوس

<table>
<thead>
<tr>
<th>وزن تکالوس (گرم)</th>
<th>میانگین قطر کالوس (میلیمتر)</th>
<th>شماره نام زنوتیب</th>
<th>شماره زنوتیب</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/045de</td>
<td>3/97g</td>
<td>ایندیکا</td>
<td>ایندیکا</td>
</tr>
<tr>
<td>0/024de</td>
<td>4/0fg</td>
<td>ایندیکا</td>
<td>ایندیکا</td>
</tr>
<tr>
<td>0/027a</td>
<td>4/25bc</td>
<td>ایندیکا</td>
<td>ایندیکا</td>
</tr>
<tr>
<td>0/033e</td>
<td>3/5b</td>
<td>ایندیکا</td>
<td>ایندیکا</td>
</tr>
<tr>
<td>0/037a</td>
<td>4/0fg</td>
<td>ایندیکا</td>
<td>ایندیکا</td>
</tr>
<tr>
<td>0/0415b</td>
<td>3/99fg</td>
<td>ایندیکا</td>
<td>ایندیکا</td>
</tr>
<tr>
<td>0/0505a</td>
<td>3/88</td>
<td>ایندیکا</td>
<td>ایندیکا</td>
</tr>
<tr>
<td>0/046a</td>
<td>4/095d-g</td>
<td>ایندیکا</td>
<td>ایندیکا</td>
</tr>
<tr>
<td>0/055bc</td>
<td>4/028cd</td>
<td>ایندیکا</td>
<td>ایندیکا</td>
</tr>
<tr>
<td>0/057vh</td>
<td>4/024de</td>
<td>ایندیکا</td>
<td>ایندیکا</td>
</tr>
<tr>
<td>0/077a</td>
<td>4/08d-g</td>
<td>ایندیکا</td>
<td>ایندیکا</td>
</tr>
<tr>
<td>0/0717a</td>
<td>4/05b</td>
<td>ایندیکا</td>
<td>ایندیکا</td>
</tr>
<tr>
<td>0/051bd</td>
<td>4/015d-g</td>
<td>ایندیکا</td>
<td>ایندیکا</td>
</tr>
<tr>
<td>0/051bd</td>
<td>3/65h</td>
<td>ایندیکا</td>
<td>ایندیکا</td>
</tr>
<tr>
<td>0/059b</td>
<td>4/22c-f</td>
<td>ایندیکا</td>
<td>ایندیکا</td>
</tr>
<tr>
<td>0/071a</td>
<td>4/52ab</td>
<td>ایندیکا</td>
<td>ایندیکا</td>
</tr>
<tr>
<td>0/06eab</td>
<td>4/14d-g</td>
<td>ایندیکا</td>
<td>ایندیکا</td>
</tr>
<tr>
<td>0/0419de</td>
<td>3/7v8h</td>
<td>ایندیکا</td>
<td>ایندیکا</td>
</tr>
</tbody>
</table>

اعدادی که حداکثر دارای یک حرف مشترک هستند به رأس آزمون اختلاف معنادار دارند (P<0/05).

لیتر هورمون D-4 و 2 دو میلی گرم در لیتر هورمون کاپتنی، و یک میلی گرم در لیتر هورمون اضافه گردید. برنامه باریک باریک گیاهی از کالوس، از محیط کشت پایه IAA و 0/5 میلی گرم در لیتر هورمون ایندیول استیک اسید BA (MS) مصرف و به میزان 4 میلی گرم در لیتر سکارز برای محیط کشت MS و 4 میلی گرم در لیتر برای محیط کشت MS و 4 میلی گرم در لیتر باریک گیاهی از کالوس، از محیط کشت پایه IAA و 0/5 میلی گرم در لیتر هورمون کاپتنی، به محیط کشت MS در لیتر هورモン کاپتنی، به محیط کشت MS در لیتر هورمون کاپتنی، به محیط کشت MS در لیتر هورم
گردد، هم چنین، وزن تور و خشک کالوس تعدادی از نکات‌های تیماری مختلف با نمونه برداری اندازه‌گیری شده و به کمک معادلات رگرسیونی لگاریتمی (الگوی aX + b وزن تور و خشک تیمارها در 4 و 16 روز پس از واکنش به دست آمد. متقابلیت درصد محصولات ای پی کالوسی 0.01 وزن تور درصد محصولات آبی وزن تور پس از انقلاب کالوس‌های تولید شده در سه میکروسکوپی کشت، به میکروسکوپ کشت بازیابی MLE درد دارد که جهانی به مشورت نظیری و کرائس بخش کالوس‌هایی از طرح کریت خود در گیاهان از زمان‌های مختلف انجام شده که میکروسکوپی کشت و رقم به صورت فاکتور هر گالری طرح یک چهارمی تصادفی با 10 تکرار بودند استفاده شده. در بخش بازیابی گیاهچه‌ای از کالوس، از آزمایش‌چند عاملی (فاکتور هر یک کاملاً تصادفی زمان تکرار (GLM) استفاده گردید. برداشت مدل علوم گرگیونی اس. ا. اس (24)، برای تجربه واریانس نتایج حاصل به کار رفت مقایسه میانگین‌ها با استفاده از آزمون اختلاف میانگین‌دار LSD (یک آنالیز) نتایج بحث ارزیابی کالوس‌زایی بر اساس قطر کالوس نتایج تجربه واریانس تفاوت معنی‌داری را (P) به جدول 1 را بیان می‌کند. مقایسه میانگین‌ها مورد اختصاص در چهارگانه کالوسی MLE و LS می‌باشد. حاصل این دو عامل سطح فاکتوریل آزمایش را ترتیب می‌دادند و بررسی آن متقابلیت این دو عامل حاکی از معنی دار بودن مقیاس رم می‌باشد. میکروسکوپی کشت بود. عامل زمان پایداری برداری به عنوان فاکتور رم‌فری، میانگین دار بود. این مقایسه زمان با میکروسکوپی کشت و زمان با رم، نیز اثر متقابلی سه جهانی، در سطح اختلال یک

میزان 8/2 گرم در لیتر برای Lس و 8/4 گرم در لیتر برای N۴ استفاده گردید.

کالوس‌زایی و واکنش

برهای نارس ایده انتخاب ۷۰٪ به مدت یک دقیقه و سپس با محلول ۰/۱ فرمی کم سدیم به مدت ۱۰ دقیقه میزان شدن. بذور نارس پس از ضدعفونی، به اندازه کشت مناسب، و در زیر پیون‌ها برای کمک پیش ثبت نگه داشته شدند، و سپس بر روی مورب به وسیله استخوانی و فشار مختلین، جیره نارس جدید گردید. سپس در داخل هر ظرف پری که نشانگر کشت قرار دارد، چنین چنین چنین چنین نشانگر کشت قرار دارد. مشاهده کننده استخوانی در تمام سطح مشاهده گردیده است. با کار گرداندن این دستیار، میکروسکوپی کشت، ناحیه اسکوتولوگی جیره مناسب با سطح میکروسکوپی کشت جدا گردیده است. با بررسی، برای جول‌گیری از این امر و اندازه‌گیری دقیقی رشد کالوس، در روز دهم کالوس‌های ایجاد شده در زیر را در فاکتوریل کشت مشاهده می‌کردند، بر روی میکروسکوپی کشت تازه از همان نوع قرار داده شد. در این واکنش، در هر ظرف پنجره کالوس‌زایی، پنجره قطره‌کالوس قرار داده شد و در ۱۰ تکرار (پنجره) کشت گردید.

نتایج و بحث

ارزیابی کالوس‌زایی بر اساس قطر کالوس نتایج تجربه واریانس تفاوت معنی‌داری را (P) به جدول 1 را بیان می‌کند. مقایسه میانگین‌ها مورد اختصاص در چهارگانه کالوسی MLE و LS می‌باشد. حاصل این دو عامل سطح فاکتوریل آزمایش را ترتیب می‌دادند و بررسی آن متقابلیت این دو عامل حاکی از معنی دار بودن مقیاس رم می‌باشد. میکروسکوپی کشت بود. عامل زمان پایداری برداری به عنوان فاکتور رم‌فری، میانگین دار بود. این مقایسه زمان با میکروسکوپی کشت و زمان با رم، نیز اثر متقابلی سه جهانی، در سطح اختلال یک
بررسی کالوسزاپی و بازیابی از کشت جنین نارس ارقام برقی

مقایسه میانگین‌های ارقام مورد مطالعه نیز نشان داد که
نهمت با متوسط قطر 4/83 میلی متر بیشترین میزان تولید
کالوس را در هر سی اتفاق کشت و در زمان‌های مختلف دارد که
به همراه چگال 0/27 میلی متر در رتبه اول قرار گرفت. لازم خود
IRFAON-30 و IRFAON-24 میلی متر در رتبه دوم قرار خود گرفتند. از بین موارد مطابق، رقم‌های کامپیوتری
سالاری رودسمی و خریداری تولید کالوس را داشتند و به
ترکیبات با متوسط قطرهای 53/77 و 4/9 میلی متر، در ترتیب
آخرین رتبه را کسب نمودند (جدول 1). تاثیر فوق، نقش بارز
رونق در میزان کالوس، نشان می‌دهد. خا نیمروز و ریما (43) با
بررسی تأثیر رقم و میزان کشت، در بخش به کشت بذر باغ
تعادل از ارقام برقی ادیکه، مشاهده نمودند که اثر رقم در
میزان و کاشت میزان دارد است.

عامل زمان به عنوان فاکتور اصلی بر اثر آزمون حداکثر
اختلافات میانگین مورد مقایسه میانگین قرار گرفت و پنج
زمان اندازه‌گیری صفر، 4، 8 و 12 روز پس از واکنش به
ترکیبات در پنج پرداز قرار گرفتند، بیشترین ترتیب که 16 روز پس از
واکنش با متوسط قطر 5/2 میلی متر بیشترین میزان تولید
کالوس و در جمله اول اندازه‌گیری با متوسط قطر 0/92 میلی متر
کمک‌کننده میزان تولید کالوس را در ارقام و میزان کم‌کاری کشت
دانا دار. این نتیجه نشان می‌دهد که میزان اندازه‌گیری قطر کالوس در
فصل پیشین و روز کاملاً در مورد است. (P > 0/01). حتی در
فاصله زمانی پایان دوره هم کالوس‌ها هم چنان به رشد
خود اندازه می‌دادند.

با مقایسه میانگین احتمالات مزاحم منطقه و میزان کشت، مشخص
شد که ارقام دانا و سید رود، به ترتیب با میانگین قطر کالوس
5/2 و 0/4 میلی متر در میزان کشت شد و رقم نموده و
MS و 0/4 میلی متر در میزان کشت 0/4 میلی متر در میزان کشت
چرا-2 هی و با میانگین قطر 0/5 میلی متر در میزان کشت
Nj را با بیشترین پایش را اقیانوس دادند که به همراه رقم
نجم در میزان کشت با میانگین قطر کالوس 3/0 میلی
متر در رتبه اول قرار گرفتند، ضمن این که اختلاف آنها نسبت به
کالوسزاپی از بسک برقی، به معنی دار ذکر نمودند.

در تهیه میوه‌های کشت اقیانوس، رنگ‌شادی شده‌اند و هم اثر
عناصر اصلی تشکیل‌دهنده میوه کشت برای روز آموز
شود و هم تأثیر ویژه‌ها و تنظیم کندن‌های رشد، به عنوان
عوامل کلیدی پاسخ به کشت، مشخص گردید. به‌ین یافته‌ای از سه
میوه کشت به کار گرفته، میوه‌های کشت MS و LS از لحاظ
ترکیب و میزان اجزای تشکیل‌دهنده، به استحکام ویژه‌ها و
تنظیم کندن‌های رشد، مشابه هم بودند و تفاوت‌های مشاهده
شد در این دو میوه کشت در پاسخ به کشت بابت مشخص
مراحل طراحی همه کشت و میزان ویژه‌ها و استحکام تا
حدودی مربوط به pH بود. همچنین، با مقایسه تأثیر
میوه MS و Nj، نتیجه می‌شود که به‌ین فاکتور دو میوه
کشت شده در مرز محدود و کم‌مرتبه، این در میزان
میوه‌های اقیانوس میان‌ترین ندارند. از آن جهت که میزان همه کشت
آماده به کار در میوه کشت، نسبت آن به سیستم‌های
یکی از مهم‌ترین عوامل تعیین کننده پاسخ به اقیانوس کالوس
(بیانش (6)، 20 و 10)، و با توجه به نتایج فرد است. (P > 0/01)
گاهی نتیجه گذاری بر اقیانوس کالوس از جنین نارس برقی دادن.
در این نتیجه گذاری گزارش بی‌پزید و همکاران (7) و همکاران
(26) هماهنگی دارد. از طرفی، می‌توان چنین استنباط
تمد میوه‌های غذاهای مختلف، در صورتی که در میزان
ویژه‌ها و تنظیم کندن‌های رشد فاکتور ویژه‌ها، باید نداشته باشد
اخته‌ای در میزان اقیانوس‌زاپی از جنین نارس برقی شد.
(26) است، که تفاوت‌های میوه‌های کشت MS و Nj و 0/4 را در
کالوسزاپی از بسک برقی، به معنی دار ذکر نمودند.
سایرین در سطح احتمال یک درصد معنی‌دار بود. از سوی دیگر، رم‌های خزر و کامپوزیتی در محیط کشت K3، با ترتیب
یا میانگین قطرات کالوس ۲/۷۵ و ۲/۲۷ میلی متر، کمترین میزان پاکس خون‌های کالوس را به خود اختصاص دادند.
کوپیوتو و زبانا (۲۳) نیز با تجزیه‌ای دای آل‌ریو، چهار رنگ برنج
از دو رنگ زایمانیکا و اینستیدکا به کمک تازه‌کاری کالوس‌زاپی و بازیابی گاه‌به‌گاه از کشت‌های ساکه، نتایج‌گزاری که
تأمین آثار مهم و محیط کشت معمولا به‌پایه این است.
نتایج تجزیه واریانس حاکی از این است که بودن اثر مشتاق
محیط کشت زمان برای میزان متوسط قطر کالوس است
(جدول ۱). مقایسه میانگین فاکتور نه اثر متفاوت نشان داد که در
زمان‌های اندام‌گیری قطرات کالوس، دو محیط کشت
به ترتیب با میانگین ۵/۲۳ و ۵/۷۶ میلی متر، بیشترین
تولید کالوس را ایجادکردند و زمان اندام‌گیری در محیط کشت
با میانگین ۷/۲ میلی متر میزان میزان دار آرا (شکل
۱)، مفهوم این امر است که برابر هم‌مان ارقام برنج مورد
مطالعه، متوسط میزان قطرات کالوس در پایان دوره کشت، در دو
محیط کشت ریزشی MS و N6 افزایش یافت و نسبت به
زمان‌های اندام‌گیری قبلی، نیز افزایش نسبت به محیط کشت
با اکثریت‌های اکثرا مشابه است. در نتیجه، مشابه
درگاه مطالعه در دو محیط کشت ۸/۳-۱۱ میلی متر با
رفت. نتیجه قابل توجهی که مشاهده شکل ۱ ب دست می‌آید
این است که میزان کالوسی که در پایان اکثریت از روز سه از راکت در
محیط‌های کشت N6 و MS تولید می‌شود، بیشتر از
کالوسی است که در پایان دوره کشت (۱۶ روز پس از راکت)
در محیط کشت MS تولید می‌گردد. این موضوع پیانگ برتری
قطعی دو محیط کشت MS و N6 قدر میزان مورد
یا کشت در اقدم برنج مورد مطالعه است. بدین‌ویژه است که تولید خداف کالوس
در مدت زمان کوتاهی، یکی از آنها مهم کشت‌های رشد، این
موضوع علاوه بر صرفاً جویی در هزینه و وقت، از توزع
سومانگلی احساسی می‌باشد در نتیجه تولید شدن مدت زمان کشت
الکلوری می‌کند (۲۳). به‌همین‌تود، در سومای کشت‌هایی که

شکل ۲. مقایسه میانگین‌های در متوسط وزن تراکم‌کالوس

شکل ۱. مقایسه محیط کشت و زمان بر اساس متوسط قطر کالوس

نداردند، ولی به علت آبادانی بودن توانستند با رقم‌های بی‌تر رقابت کنند. میانگین عمیق‌ترین زمان نیز مقایسه گردید، و زمان آخر با میانگین وزن تراکمی گرم در قرنطینه اول و زمان اول انتخاب گردید. میانگین ۱۳۵/۰۰ گرم در قرنطینه دوم قرار گرفت. این نتیجه نیز نشان می‌دهد که تراکم‌کالوس طی ۱۲ روز

در ارزیابی قبیله که بر مبنای قطر کالوس تراکم، در گروه‌های پایین قرار دارند، ولی در اینجا که بر مبنای وزن تراکم ارزیابی انجام شد، این تراکم‌کالوس در قرنطینه اول جای گرفتند. این حاوی از بالا بودن میزان آب در کالوس این تراکم‌کالوس است. بدین ترتیب که این کالوس‌ها اگر چه از نظر ظاهری رشد چشم‌گیر
مقایسه میانگین ارقام مورد مطالعه نشان داد که رقم‌های از 46 درصد محتوای آبی برای کالوس‌ها در گروه‌های LS 43 درصد در گروه‌های دوم و محیط کشت MS 42 درصد در گروه‌های گرفت (P<0.01). بنابراین، محیط کشت MS که از نظر میزان تولید کالوس بر حسب و طور با MS نشان داده از نظر محیط کشت MS نشان داد به این محیط کشت برتری نشان داد.

دلیل آن را می‌توان چنین بیان نمود که علت مقدار زیاد ساکارز، هیمنژین استفاده از کاریکاتورهای هیپودریپوز در ترکیب محیط کشت MS، میزان پانتئین اسیدی این محیط نسبت به MS بیشتر بوده و بدین علت است که در محیط‌های MS کشت به پانتئین اسیدی زیاد قابلیت جذب آب توسط کالوس کاهش می‌یابد.

مقایسه میانگین ارقام مورد مطالعه نشان داد که رقم‌های از 46 درصد محتوای آبی برای کالوس‌ها در گروه‌های LS 43 درصد در گروه‌های دوم و محیط کشت MS 42 درصد در گروه‌های گرفت (P<0.01). بنابراین، محیط کشت MS که از نظر میزان تولید کالوس بر حسب و طور با MS نشان داد به این محیط کشت برتری نشان داد.

دلیل آن را می‌توان چنین بیان نمود که علت مقدار زیاد ساکارز، هیمنژین استفاده از کاریکاتورهای هیپودریپوز در ترکیب محیط کشت MS، میزان پانتئین اسیدی این محیط نسبت به MS بیشتر بوده و بدین علت است که در محیط‌های MS کشت به پانتئین اسیدی زیاد قابلیت جذب آب توسط کالوس کاهش می‌یابد.

مقایسه میانگین ارقام مورد مطالعه نشان داد که رقم‌های از 46 درصد محتوای آبی برای کالوس‌ها در گروه‌های LS 43 درصد در گروه‌های دوم و محیط کشت MS 42 درصد در گروه‌های گرفت (P<0.01). بنابراین، محیط کشت MS که از نظر میزان تولید کالوس بر حسب و طور با MS نشان داد به این محیط کشت برتری نشان داد.

دلیل آن را می‌توان چنین بیان نمود که علت مقدار زیاد ساکارز، هیمنژین استفاده از کاریکاتورهای هیپودریپوز در ترکیب محیط کشت MS، میزان پانتئین اسیدی این محیط نسبت به MS بیشتر بوده و بدین علت است که در محیط‌های MS کشت به پانتئین اسیدی زیاد قابلیت جذب آب توسط کالوس کاهش می‌یابد.

مقایسه میانگین ارقام مورد مطالعه نشان داد که رقم‌های از 46 درصد محتوای آبی برای کالوس‌ها در گروه‌های LS 43 درصد در گروه‌های دوم و محیط کشت MS 42 درصد در گروه‌های گرفت (P<0.01). بنابراین، محیط کشت MS که از نظر میزان تولید کالوس بر حسب و طور با MS نشان داد به این محیط کشت برتری نشان داد.

دلیل آن را می‌توان چنین بیان نمود که علت مقدار زیاد ساکارز، هیمنژین استفاده از کاریکاتورهای هیپودریپوز در ترکیب محیط کشت MS، میزان پانتئین اسیدی این محیط نسبت به MS بیشتر بوده و بدین علت است که در محیط‌های MS کشت به پانتئین اسیدی زیاد قابلیت جذب آب توسط کالوس کاهش می‌یابد.
مقایسه میانگین اثر متقابل محیط کشت و زمان بر اساس وزن تراکس

شکل ۳. مقایسه میانگین متقابل محیط کشت و زمان بر اساس متوسط وزن تراکس

شکل ۴. مقایسه میانگین ارقام بر اساس درصد محتویات آبی کالوس

مقایسه میانگین اثر متقابل محیط کشت و زمان نیز ممکن دارد.
شدن تمامی سطوح مورد مطالعه را تشکیل داد. به طوری که
محیط‌های MS و N۶ در زمان آخر نمونه‌برداری به ترتیب در
دو گروه مستقل قرار گرفتند. نتیجه یافته این بود که میزان
محتویات آبی کالوس‌های موجود در محیط کشت LS در زمان

آخر نمونه‌برداری، بسیار کمتر از آب کالوس‌های محیط‌های
کشت N۶ و MS در زمان اول نمونه‌برداری بود. این بیانگر روکد
و عدم رشد کالوس در محیط کشت LS است (شکل ۵). با
ملاحظه مقایسه میانگین اثر متقابل رقم و زمان، برتری لاین
IRCTN۹۱۱۳ از نظر میزان آب کالوس آشکار می‌شود، که به

۶۵
شکل ۵. مقایسه میانگین‌های اثر متقابل محیط کشت و زمان بر اساس درصد محیط‌های آبی کالوس

نتیجه‌گیری: در گروه‌های مختلف، محیط‌های کشت کالوس‌زایی و اثر متقابل این دو عوامل اثر ملایمی داشته و درصد بازیابی‌های زاویه‌ای نیز این اثر ملایمی داشته.

با بازیابی گیاهی در نتایج تجزیه واریانس نشان داد که ارقام مورد مطالعه، محیط‌های کشت کالوس‌زایی و اثر متقابل این دو عوامل اثر ملایمی داشته و درصد بازیابی کمی دارد.

با ملاحظه مقایسه میانگین‌های زاویه‌ای کالوس مورد مطالعه (شکل ۶)، چنین بررسی‌هایی که در روش‌هایی که در مورد کشت کاشت در این مطالعه با توجه به وضعیت رکود و به همراه ارقام محاسبه شده‌اند نشان دهنده گرفته‌ها (۱۰/۶) در حالی که ارقام بسیاری و سازندگی دارای کمترین درصد بازیابی بودند.

همان گونه که در شکل ۶ ملاحظه می‌شود، درصد غنی‌بودن محصول و لایه‌گیری در (۱۳۱۹۹۱) از گروه‌های بازیابی، همکاری که پیشرفت در این گروه را بازیابی‌های زاویه‌ای کمی و همچنین ارقام بازیابی را در محیط کشت در این دو عوامل نشان داده است. تصویر و همکاران (۲۷) نیز به دلایل گیاه عسل و زحمت در بازیابی‌های زاویه‌ای کالوس اشاره کردند.

مقایسه میانگین محیط‌های کشت القای کالوس نشان داد که در گروه‌های مختلف، محیط‌های کشت کالوس‌زایی و اثر متقابل این دو عوامل اثر ملایمی داشته و درصد بازیابی‌های زاویه‌ای نیز این اثر ملایمی داشته.
درصد پازلزایی کالوس‌های حاصل از دو محیط کشت با یکدیگر تفاوت معنی‌داری ندارند، ولی کالوس‌های حاصل از محیط کشت LS به طور معنی‌داری درصد پازلزایی کمتری دارند. مقایسه میانگین های اثر متقابل محیط کشت و رقم نیز حاکی از آن بود که کالوس‌های ارقام عنبیرو مخللی، چرام -2، تعادل و MS، لاین IRCTN91-33 رشد پایه‌ای در محیط کشت و کالوس‌های ارقام عنبیرو مخللی، تعادل، ندا هاضیم مخللی و لاین IRCTN91-33 رشد یافته در محیط کشت N6، بیشترین درصد پازلزایی را دارا بودند، و در گروه اول آزمون LSD بیشترین درصد پازلزایی را داشتند.

با توجه به این نتایج، مشاهده می‌شود که کالوس‌های رقم چرام-2 که در محیط کشت MS تولید شده‌اند، باید پازلزایی کالوس‌های ارقام عنبیرو مخللی، چرام -2 و MS در محیط کشت N6 بسیار مناسبتر از کالوس‌های تولیدی شده در محیط کشت چرام-2 و MS باید بهتر بررسی شوند. این نتایج می‌تواند به بهبود کالوس‌های ارقام عنبیرو مخللی و N6 کمک کند.

نظرات مشخص است که با گزارش‌های متعدد (3، 7، 13، 12 و 22) مطابقت دارد.
جدول ٢. ضرایب همبستگی بین صفات مختلف در محیط کشت MS برای زنوتیپ‌های مورد مطالعه

<table>
<thead>
<tr>
<th>صفت</th>
<th>قطر کالوس</th>
<th>وزن ترکالوس</th>
<th>وزن خشک کالوس</th>
<th>درصد محتویات آبی کالوس</th>
<th>درصد باززاپی</th>
</tr>
</thead>
<tbody>
<tr>
<td>قطر کالوس</td>
<td>١</td>
<td>٠/٨٩</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>وزن ترکالوس</td>
<td>٠/٨۷</td>
<td>١</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>وزن خشک کالوس</td>
<td>٠/٩٥</td>
<td>١</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درصد محتویات آبی کالوس</td>
<td>٠/٦٣</td>
<td>٠/٥٣</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درصد باززاپی</td>
<td>٠/٢٢</td>
<td>٠/٢٩</td>
<td>٠/٢٨</td>
<td></td>
<td>١</td>
</tr>
</tbody>
</table>

ضرایب همبستگی بر گرداز از ٠/٦۶ و کوکبکتر از ٠/٥۵ در سطح احتمال بک درصد و ضرایب همبستگی بر گرداز از ٠/٦۷ و کوکبکتر از ٠/۴۵ در سطح احتمال بک درصد ممکن نیست.

جدول ٣. ضرایب همبستگی بین صفات مختلف در محیط کشت کالوس برای زنوتیپ‌های مورد مطالعه

<table>
<thead>
<tr>
<th>صفت</th>
<th>قطر کالوس</th>
<th>وزن ترکالوس</th>
<th>وزن خشک کالوس</th>
<th>درصد محتویات آبی کالوس</th>
<th>درصد باززاپی</th>
</tr>
</thead>
<tbody>
<tr>
<td>قطر کالوس</td>
<td>١</td>
<td>٠/٦٥</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>وزن ترکالوس</td>
<td>٠/٦١</td>
<td>١</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>وزن خشک کالوس</td>
<td>٠/٩٥</td>
<td>١</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درصد محتویات آبی کالوس</td>
<td>٠/٧٢</td>
<td>٠/٧٢</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درصد باززاپی</td>
<td>٠/٢١</td>
<td>٠/٢١</td>
<td>٠/٢١</td>
<td></td>
<td>١</td>
</tr>
</tbody>
</table>

ضرایب همبستگی بر گرداز از ٠/٦۵ و کوکبکتر از ٠/٥۵ در سطح احتمال بک درصد، و ضرایب همبستگی بر گرداز از ٠/۴۵ و کوکبکتر از ٠/۴۵ در سطح احتمال بک درصد ممکن نیست.

نتیجه‌گیری و پیشنهادها

نتایج حاصل از این مطالعه بر روی ١٨ رقم برنگ و سه محیط
برای هر گروه زنناتیپی معمول معلوم گردد. مشابه با سایر گزارش‌ها، در این آزمایش نیز در صفت دوم بالا را گاهی به نسبت زنناتیپی شکستگی را در زنناتیپی بیان دهنده همچنین، از نظر مکانکرد کالوس و میزان زنناتیپی می‌پیش‌بینی که MS برتراک قابل ملاحظه‌ای نسبت به محیط کشت N6 نشان دادند. به طوری که کالوسی که در چهار روز پس از واکنش در این دور محیط نرمال شده، بسیار بزرگتر از کالوسی می‌باشد که در پایان دوره کشت در محیط کشت LS تولید گردید. بدلیل است که تولید کالوس بیشتر در مدت زمان کمتر، یکی از اهداف مهم روش‌های کشت بافته می‌شود.

در این مطالعه معلوم شد که یوبایان‌ها و تنظیم کندنه‌های رشد گیاهی، به‌خصوص هورمون آکسین به کار رفته در محیط کشت، تأثیر شگرفی بر بالای کالوس از جنس نارس برتراک دارد.

همچنین، مشخص شد که اگر محیط‌های کشت غذایی در میزان و پرینام‌ها و تنظیم کندنه‌های رشد تفاوت‌دار داشته باشند، احتمالاً در میزان القای کالوس از جنس نارس برتراک تفاوت معنی‌داری ندارند. به عبارتی، می‌توان گفت که ترکیبات پرمرف و کم مصرف، اثر معنی‌داری بر بالا را به زنناتیپیکی از جنس نارس برتراک ندارند. با بررسی زنناتیپی در مورد مطالعه احتمالاً نظر

منابع مورد استفاده

Plant Tissue Culture Symp. Science, Peking, China.

