, mosaddeghi@basu.ac.ir
Abstract: (33833 Views)
Organic fertilizers are the sources of many human-pathogenic microorganisms which potentially threaten the human health. This study was carried out to explore the possible effects of soil and manure types on filtration, transport and fate of manure-borne bacteria through undisturbed soil columns. The manure treatments consisted of cow manure, poultry manure and sewage sludge which were distributed at the rate of 10 Mg ha-1 on the surfaces of intact columns of two sandy clay loam and loamy sand soils. The manure-treated soil columns were leached by tap water with similar unsaturated flux of 4.8 cm h-1 up to four pore volumes (PV). The influent and leachate were sampled at different PVs. Gram-negative bacteria concentrations were determined for the influent and the columns’ leachate. Average influent concentration, average effluent concentration, relative filtration, and transported bacteria fraction during the leaching events were determined. Significant differences (P<0.05) were observed between the poultry manure and the other two manures in terms of average influent (i.e. manure-released) bacteria concentration. Stable structure and preferential pathways facilitated the bacteria movement in the sandy clay loam soil columns. The loamy sand soil strained 1.45 times more bacteria than the sandy clay loam soil due to its weak structure and blocked-dead pores. Relative contamination of the effluent was higher for poultry manure when compared with the other fertilizers. The low ionic strength of sewage sludge suspension caused the lower filtration of bacteria through the soil columns. The high concentration of soluble organics in cow manure resulted in a relative transport of the bacteria 1.12 times greater than the poultry manure. In general, management of organic fertilizers especially household poultry manure, as a considerable source of pathogenic bacteria, is important to control the environmental risks of pathogenic pollutions. Moreover, the soil texture and structure significantly affected the fate of manure-borne bacteria.
Type of Study:
Research |
Subject:
Ggeneral Received: 2010/06/19 | Published: 2009/01/15