بررسی دو روش فتوگرامتری و زیری سنجهای لیزری به منظور اندازه‌گیری میکروتوپوگرافی خاک

محمد رضا میرزایی¹، استفان قوی، غلامرضا قضاضا³ و کریستینا بونر²

چکیده

اساس کار ارائه شده بر منیو تهیه یک مدل رقیم زمین (DEM) در دو ماکت با ابعاد 500x500 سانتی متر و یا شرایط زیری متفاوت (زیری تند و زیری ملایم) در 151 مکان. برای تهیه DEM از دو روش زیری سنج لیزری و فتوگرامتری استفاده شد. تصاویر فتوگرامتری در دو ماکت و در شرایط متفاوت داده شده و روش لزیپری با داشتن صحیح و دقت به همراه با ARCGIS انجام شد. روش فتوگرامتری در نظر گرفته شده و سپس این در دو روش با استفاده از نرم‌افزارهای مختلف آماری و خصوصیات خاک مانند هیستوگرام‌های شب و ارتفاع مورد مقایسه قرار گرفتند. در نهایت با استفاده از مدل‌های رقیم زمین در دو روش میزان ضریب اتصال (RR) و جداکردن عناوین نماینده میکروتوپوگرافی سطح خاک و یکی از عوامل کلیدی در شبیه‌سازی از فرآیندهای

نگهدارش سطحی خاک تعیین شد. RR میزان خطا در شبیه‌سازی به روش فتوگرامتری متقابل با لزیپری به طور هیدرولوژیکی و فرسایش مطالعه قرار گرفت. میزان خطا محاسبه شده با وسیله روش فتوگرامتری در مقایسه با لزیپری به طور متوسط 10 درصد در ماکت با زیری پایین و 5 درصد بر ماکت با زیری بالا می‌باشد. این میزان خطای محاسبه جداکردن نگهدارش سطحی

و از وابستگی کلیدی: فتوگرامتری، زیری سنجهای لیزری، زیری تصادفی، مدل رقیم زمین

مقدمه

اثرات محروم روانه و فرسایش خاک حاصل از آن یکی از تهیه‌سازی محیط زیستی در دنیا و در ایران به شمار می‌روند و به مکانی‌ها کاهش آب‌نیازی آنها شناخت‌فرآیند اجرا نگه‌داشت روانه و

1. استادان مرغ و آبخویزیار. منابع طبیعی و زیست محیطی. دانشگاه پاسیو

2. محقق مؤسسه تحقیقات کشاورزی ایرانی، فراشبند

3. استادان مرغ و آبخویزیار. دانشگاه کشاورزی و منابع طبیعی. دانشگاه شیراز

4. دانشجوی دکتری ملی‌زای اکولوژیک، دانشگاه براون، آلمان

mmirzaei@mail.yu.ac.ir

مطالعه

تحوی پراکش یک مهم می‌باشد. زمانی که مکانیسم اصلی اجادات

روانه از نوع هورتونی (روانه اجادات شده به سیل‌های آب مزاد

بر نفوذپذیری) باشند. کنترل و هدایت روانه سطحی به طور مستقیم به وسیله میکروتوپوگرافی سطح خاک صورت می‌گیرد.

1. استادان مرغ و آبخویزیار. منابع طبیعی و زیست محیطی. دانشگاه پاسیو

2. محقق مؤسسه تحقیقات کشاورزی ایرانی، فراشبند

3. استادان مرغ و آبخویزیار. دانشگاه کشاورزی و منابع طبیعی. دانشگاه شیراز

4. دانشجوی دکتری ملی‌زای اکولوژیک، دانشگاه براون، آلمان

mmirzaei@mail.yu.ac.ir

77
رشیب سطح‌های خاک از نظر تنها میکروتوپوگرافی و توزیع مکانیاً بلندی‌های سطح، در میانس سانتی‌متر تا دسی‌متر می‌باشد. البته در این مقاله در همین مقدار هم‌افزایی سطح‌هایی است. به طورکلی می‌تواند از نوع زیبایی سطحی تشخیص داد. - زبری (Oriented roughness)

جستن می‌تواند کاربردی یا یا تربیتی که به وسیله سطح‌های کشش‌زده صورت می‌گیرد، ایجاد می‌شود و 2- زبری تصادفی (Roughness)

یاد اینکه زبری توزیع ذرات و ریزدانه‌های خاک بر روی یک سطح صاف می‌باشد (1 و 7).

به نظر می‌رسید فاکتور از زیر سطوح بررسی قرار گرفته است: 1- اثر نفوذپذیری (اصطلاح) روی سرعت جریان آب که عموماً در ضایعات مناسب و با نظری تفسیر می‌شود.

2- اثر آن روی نحوه انتقال رواناب که در این بخش معمولاً پیشباندا نیازمند سطح های زبری باشد.

و برنامه‌ها به بعضی از ابزارهای رو، رواناب و فرسایش مورد استفاده قرار گرفته است. عموماً از این دسته از یکسایی روابط تجربی برای تعیین سطحی هنگام سطح استفاده می‌شود.

در واقع اثرات زبری سطح خاک به طور همزمان روی میزان خاک‌ها و سطح‌های نفوذپذیری که می‌گذارد به طوری که جریان کلی نفوذپذیری تبدیل به اثر افقی در سطح خاک دارد و در نتیجه تقارن نفوذپذیری خاک با نیازمند آب خیاطه شده در داخل جاله‌ها دارد(2). بنابراین با تعیین بر خلیق شدن چاله‌ها موجود در سطح خاک و ارتباط بین آنها، زمان پیاده‌سازی رواناب قبلی پیش‌بینی خواهد بود وی رشیدان به این هدف نیازمند تولید و بهبود سازی سطح‌های انتزاعی (مائل) از جهت هزینه و تجهیزات مورد استفاده در روش فن‌گرفتاری می‌باشد.

رشیب داشته‌اند که بر اثر زبری خاک با استفاده از زبری سنج‌ها یا میزان در و کلاس بریک استانداردی کرده 1- روش‌هایی (Contact methods)

تعامیل می‌باشد.

می‌باشد.
جهت برآورد ظرفیت نگهداری سطحی می‌باشد (17 و 24).

از طرف دیگر میزان ظرفیت نگهداری سطحی یک متغیر نتایج می‌باشد که برای تعیین میزان رواناب در مقياس کوچک ناکافی است. در واقع حداقل نگهداری سطحی است که معمولاً در مدل‌های هیدرولوژیکی به کار رفته می‌شود (12).

که این متغیر با یادداشت محلی (Local model) در مقياس کوچک (پیدایش رواناب زمان‌گذار نمی‌باشد.). زیرا در این مقياس ممکن است رواناب قبل از رسیدن به حداکثر نگهداری سطحی، شروع شود (15 و 16).

نتیجه‌های توصیف‌برداری مانند فتوگرامتری روش‌های کاملاً جدیدی می‌باشند. مقالات اندکی نیز در این مورد انتشار یافته است و در این اوایل توجه زیادی را به خود جلب کرده‌است (15 و 23). زیرا در یکی از مقالاتی آن‌ها نشان داده‌اند که استفاده از میانگین رقیم‌های بزرگ بررسی کردن تغییرات میکروخب‌بردنی یک نوع از آزمایش‌های کرده است.

این کار تحت شرایط بندی‌گر صورت گرفته است. گروه‌های اجرایی به صورت آزمایشی می‌باشد اما فقط منظر مربوط به استخراج اطلاعات منظر به این میکروخب‌بردنی و بروندوم (microdepression) یک روش‌های کاملاً جدیدی می‌باشد.

به عنوان نمونه، خصوصیات سطحی خاکی (superficial) تعیین شده. سپس با مقیاس‌هایی تا حدی، کاهی روش‌های فتوگرامتری در نتیجه‌های خصوصیات مورد بررسی قرار گرفت.

روش لیزری

با استفاده از روش لیزری (شکل 2)، برای هر دو مکات، مقدار رقیم زمین به‌دست آمده، در مکات با رنگ‌های مختلف رنگ‌های مختلف رنگ‌های مختلف رنگ‌های مختلف رنگ‌های مختلف رنگ‌های با رنگ‌های متفاوت کارهای متفاوت در نتیجه‌های خصوصیات سطحی خاکی (superficial) تعیین می‌شود. سپس با مقیاس‌هایی تا حدی کاهی روش‌های فتوگرامتری در نتیجه‌های خصوصیات مورد بررسی قرار گرفت.
روش فتوگرامتی

به طور کلی تصوری در دو سری از ماکت‌ها تهیه شده. فتوگرامتی
از فاصله‌های نزدیک متناژ به موادی است که مش و مورد عکس، برداری
در فاصله‌های بین یک تا صد سانتی‌متر قرار گیرد. با استفاده از دو دوربین
(شکل ۲) از یک شی به‌کار بردن از دو دید متفاوت عکس برداری
صورت می‌گیرد. سپس با استفاده از قوانین هندسی و اپتیکی میزان
اختلاف دو نقطه متناژ (تغییر میزان جابجایی دو نقطه در سر دید
از دو جهت) را از دو تصویر مشخص می‌کند. سپس با استفاده از
معادله (۱) میزان ارتفاع به‌دست می‌آید:

\[d = \left(u_1 - u_2 \right) \frac{f_b}{z^c} \]
بررسی دوره روش فتوفراغی یک نمونه‌ی ساده‌ای از سیستم دید سه بعدی توسط دورین

گرفت: 1- مرحله واسنجی دورین‌های مورد استفاده در استروگرافی (دید سه بعدی) و تعیین پارامترهای دورین. در این مرحله تعدادی عکس (شکل 4) از صفحه واسنجی گرفته شد. این صفحه با دقت بسیار بالایی تهیه و محتویات دقیق آن کاملاً تهیه شد. 2- عکس‌ها از شی مورد نظر به دست آمده. تصاویر استروتو به وسیله یک جفت دورین واسنجی شده به دست می‌آید.

3- بعد از به دست آوردن تصاویر استروتو، تصاویر اصلاح شدند. تصویر صورتی که نقاط متناژ در دو تصویر اصلاح شده، روی همان روابط انسانی قرار گرفت. - مرحله آخر به دست آوردن اطلاعات سه بعدی می‌باشد. برای هر نقطه موجود در تصویر اول نقطه متناژ آن در تصویر دوم به دست آمده که با به دست آوردن جابجایی نقاط می‌توان میزان فاصله شی را از دستگاه مختصات دورین‌ها به دست آورد.

نکته قبلی ذکر این است که در مرحله (2) و (3) عکس برداری صورتی می‌پذیرد، زیرا این نوعی نکات ضروری

می‌باشد. مانند این که هیچ گونه تغییری نیافته‌ای در خصوصیات دورین مانند سرعت شانزه و دیافراکم و فاصله کانالی به وجود آید. با توجه به موارد ذکر شده در بالا، به دست آوردن تصاویر مناسب (دارای وضوح و نوردهی مطلوب) درای اهمیت بسیاری می‌باشد که برای بررسی این موضوع تحقیق دیگری (25) روی نحوه عکس برداری و استفاده از پارامترهای مناسب داتشی صورت گرفت. برای تهیه تصاویر دورین‌هایی بر روی یک نگهدارنده نصب شد.

ساخت نگهدارنده دورین

به منظور نصب دورین‌ها به صورت ثابت و عمودی، یک تکه‌گاه در استیلو ملی تحقیقات کشاورزی فرانسه (INRA) در شهر اوینون ساخته شد که تصویر آن در شکل ۲ آمده است. در طراحی و ساخت تکه‌گاه دورین‌ها، موارد متعددی (مانند...
شکل 4. نکه‌گاه و وسایل مورد استفاده در این روش تنظیم فاصله بین دوربین‌ها. دقت در ساخت محل نصب دوربین‌ها جهت عملکرد روش فتوگرامتری در صورت وجود آب در داخل حالا صورت گرفت. برای تهیه مدل رقمی زمین از نرم افزار بردارش تصویری خاصی استفاده شد. با انجام برنامه نویسی در این نرم افزار در اول در محل (2) فتوگرامتری (رده‌ی شدو به قسمت فتوگرامتری) ارتفاع نقاط بر روی یک‌پکسل به دست آمد. در فاصله خروجی مختصات نقاط در فاصله از 40 سانتی‌متری و ارتفاع حدود 1/4 متری سطح زمین قرار گرفته‌اند.

دقت مدل رقمی با استفاده از فتوگرامتری به طور کلی با عکس پردازی در دور تاریخ متفاوت از دو ماکت صورت گرفت. در یک فضای برای بررسی این که آیا روش

\[742\]
بررسی دو روش فتوگرایی و زیرسنج‌یافته به منظور اندازه‌گیری...
جدول ۱. میزان خطا متوسط مجموع خط (به میلی متر) در جهت X و Y در عملیات انتقال سیستم

<table>
<thead>
<tr>
<th>عکس برداری دوم</th>
<th>عکس برداری اول</th>
</tr>
</thead>
<tbody>
<tr>
<td>زبری پایین</td>
<td>زبری بالا</td>
</tr>
<tr>
<td>1/112</td>
<td>1/22</td>
</tr>
</tbody>
</table>

شکل ۵. مدل رقمی زمین برای ماکت‌های به همراه کادر، با زبری بالا و پایین از روش فتوگرامتری (دو تصویر بالا):

و روش فتوگرامتری بعد از میان‌پایی (دو تصویر پایین). واحده محوط مختصات میلی‌متر می‌باشد.

گروه‌های متفاوت به دست آمد. انحراف معیار حاصل از دو روش نزدیک بوده و در روش فتوگرامتری مقدار کمی بالاتر (حدود 5 در برای ۶/۷۸) است. سیستم و میانگین نسبتاً برای بوده وی در اینجا نیز میزان میانگین در روش فتوگرامتری حدود ۶/۵ و ۶/۷۸ در مورد ماکت‌ها با زبری مالیم نیز توزیع مناسب ارتفاعات در

744
4.3 آمار توصیفی ارتفاعات مدل‌های رقمی زمین به دو روش لیزی و فتوگرافی

<table>
<thead>
<tr>
<th>روش</th>
<th>ماتک با لیزی بالا</th>
<th>ماتک با لیزی پایین</th>
<th>ماتک با فتوگرافی بالا</th>
<th>ماتک با فتوگرافی پایین</th>
<th>آمار</th>
<th>میانگین</th>
<th>انحراف میانگین</th>
<th>حداقل</th>
<th>حداکثر</th>
</tr>
</thead>
<tbody>
<tr>
<td>لیزی</td>
<td>0/55</td>
<td>0/51</td>
<td>0/68</td>
<td>0/68</td>
<td>3/7</td>
<td>8/47</td>
<td>11/24</td>
<td>4/72</td>
<td>2/72</td>
</tr>
<tr>
<td>فتوگرافی</td>
<td>1/15</td>
<td>1/24</td>
<td>1/24</td>
<td>1/24</td>
<td>1/4</td>
<td>2/24</td>
<td>3/24</td>
<td>1/3</td>
<td>4/3</td>
</tr>
<tr>
<td>میانگین</td>
<td>0/85</td>
<td>0/85</td>
<td>0/85</td>
<td>0/85</td>
<td>1/1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/1</td>
<td>1/1</td>
</tr>
</tbody>
</table>
توزیع دور روش فتوگرامتری و زیرسنج لیزری به منظور اندام‌گیری...
جدول 2. آمار توصیفی شبیه‌سازی محاسبه شده از مدل‌های رفومی زمین به دو روش لیزی و فتوگرامتری

<table>
<thead>
<tr>
<th>روش</th>
<th>ماتک با زیری بالا</th>
<th>ماتک با زیری پایین</th>
<th>آمار</th>
<th>میانگین</th>
<th>انحراف معیار</th>
<th>حداقل</th>
<th>حداکثر</th>
<th>میانه</th>
<th>مجموع</th>
<th>جدول 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>لیزی</td>
<td>18/9</td>
<td>19/9</td>
<td>15/8</td>
<td>19/6</td>
<td>16/8</td>
<td>19/6</td>
<td>16/8</td>
<td>19/6</td>
<td>16/8</td>
<td>19/6</td>
</tr>
<tr>
<td>فتوگرامتری 1</td>
<td>20/8</td>
</tr>
<tr>
<td>فتوگرامتری 2</td>
<td>20/8</td>
</tr>
</tbody>
</table>

شبیه‌سازی تمایل شهادت‌های میانگین به میانگین در ماتک با زیری بالا و ماتک با زیری پایین می‌تواند به روش لیزی و فتوگرامتری استفاده شود. نتایج به طور گسترده‌ای نشان می‌دهد که در ماتک با زیری بالا، شبیه‌سازی تمایل شهادت‌های میانگین به میانگین با روش لیزی و فتوگرامتری به صورت متفاوت است.

مقایسه روش ترانسکتور

با توجه به پلات پاک‌سازی ارتفاعی (شکل 1)، روش فتوگرامتری همواره دارای میانگین بالاتر از روش لیزی در رنگ زمینی بوده است. با توجه به تفاوت‌های ملایم برای شبیه‌سازی در ماتک با زیری بالا و ماتک با زیری پایین در روش لیزی و فتوگرامتری، تأکید بر روش لیزی به عنوان روش معمول استفاده می‌شود.

وجود شبیه‌سازی می‌تواند به مقدار زیاد در ماتک با زیری بالا و
توجه به این که داده‌های لری و فتوگرامتری همانطور که قبلاً توضیح داده شد در یک سیستم مختصات قرار دارند. می‌توان آنها را به طور مستقیم مورد مقایسه قرار داد، برای مقایسه به این روش ترانسکتیه ممکن است برای هر مورد در فواصل مشخص تهیه شد که نمونه‌هایی از آن در شکل 1 آراشده شده است.

مطالب شکل 12 در تمامی موارد همبسته‌پذیر مناسب روش فتوگرامتری را به روش لرزی می‌توان ملاحظه کرد، اما به طور کلی می‌توان یک خصائص سیستماتیک وجود دارد که بر اساس آن روش فتوگرامتری می‌توان در جوانه همبسته‌پذیر را به شکلی راهنمایی ارتباط است. می‌توان تفاصل دو مدل رقومی (شکل 11) را با توجه به تفاصل راهنما نسبتاً کمکان (پنجم بیانده ارتفاع است) مناسب وجود یک خطای سیستماتیک را تایید کرد. از دلایل اصلی این وجود یک خطای سیستماتیک، خطأ در انتقال سیستم مختصات را می‌توان نمود که به علت تعداد بالای نقاط مناظر و همچنین قرار داشتن آنها در ارتفاع تنبا به اثر فرآیند با دقت در تصویر تفاصل در روش فتوگرامتری و لرزی مشاهده می‌شود که اختلاف در روش در جوانه کلوخه‌ها و پشتی و بلندی‌ها بیشتر از سایر قسمت‌ها می‌باشد و هر چه زیری شدیدتر باشد این اختلافات مشاهده نشده بود، این عمل روی تصاویر تکرار اول نیز انجام شد که در عمل همین تیجه گرفتند.

این نتایج با راز دادن داده‌های لرزی و داده‌های فتوگرامتری در یک دستگاه مختصات (شکل 12) نمودارهای یک روش پیرس به صورت خطی به دست آمده بنا بر تیپ آنالیز انجام شد (جدول 5) با توجه به نتایج آنالیز انجام شده (جدول 6) مقدار معنی‌دار دارد.

مقدار بی‌ربط کچک که نشان داده‌های همبسته‌پذیر منفی در سطح 0/01 می‌باشد. همچنین نیز خطا استاندارد برای ضرایب معادله در مقیاس با داده یک ضارب جدول 6) مقدار کمی را نشان می‌دهد که باید این ضرایب نیز سطح معنی‌داری کمتر از 0/01 باشد. در شکل فوق می‌توان گفت که در مورد مکانت با
شکل 10. مقایسه ترانسکت ها در دو جهت X و Y در دو ماکت با زیری بالا (ترانسکت‌های بالا) و با زیری پایین (ترانسکت‌های پایین).

شکل 11. نمایش منطقه کار در دو ماکت و تفاضل مدل رقیمی زمین در روش تاسوگاماتی و روش لزوری در دو ماکت با زیری بالا (تصویر بالا) و زیری پایین (تصویر پایین).
بررسی دو روش فتوگرامتری و زیرسنج لیزری به منظور اندازه‌گیری...

شکل ۱۲. رابطه خطی بین داده‌های بدست‌آمده از روش لیزری و روش فتوگرامتری- تکرار دوم در دو مکتبا زیری بالا تکرار اول و پایین تکرار اول. خط نقطه‌ای چنین خط ۱:۱ می‌باشد.

جدول ۵. ضرایب همبستگی به‌همراه سطح معناداری روش لیزری با روش فتوگرامتری

<table>
<thead>
<tr>
<th>تکرار دوم</th>
<th>تکرار اول</th>
</tr>
</thead>
<tbody>
<tr>
<td>زیری بالا</td>
<td>*p<0.05</td>
</tr>
<tr>
<td>سطح معناداری</td>
<td>*p<0.05</td>
</tr>
<tr>
<td>زیری پایین</td>
<td>*p<0.05</td>
</tr>
<tr>
<td>سطح معناداری</td>
<td>*p<0.05</td>
</tr>
</tbody>
</table>

همان‌طور که مشاهده می‌شود در هر دو تکرار، و در هر دو مکتبا زیری لیزری به هم نزدیک می‌باشد که نشان دهنده این شده است.

منظور ترانسکست‌های سپاری در جهات مختلف X و Y به‌شکل در جدول ۷ مبناگیری به‌هم‌آمد. به‌هم‌آمد همان‌طور که مشاهده می‌شود در هر دو تکرار، و در هر دو مکتبا زیری لیزری به هم نزدیک می‌باشد که نشان دهنده این شده است.

۷۵۱
جدول 6. ضرایب معادله (y=a+bx) همبستگی به همراه سطح معنی داری روش لیزی با روش فتوگرامتری

<table>
<thead>
<tr>
<th>ضریب معنی دار</th>
<th>روش لیزی</th>
<th>ماکت</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0019</td>
<td>0.0012</td>
<td>0.0127</td>
<td>0.92</td>
<td>23</td>
</tr>
<tr>
<td>0.0013</td>
<td>0.0012</td>
<td>0.0127</td>
<td>0.75</td>
<td>22</td>
</tr>
<tr>
<td>0.0019</td>
<td>0.0012</td>
<td>0.0127</td>
<td>0.83</td>
<td>28</td>
</tr>
<tr>
<td>0.0019</td>
<td>0.0012</td>
<td>0.0127</td>
<td>0.88</td>
<td>28</td>
</tr>
<tr>
<td>0.0019</td>
<td>0.0012</td>
<td>0.0127</td>
<td>0.88</td>
<td>28</td>
</tr>
</tbody>
</table>

جدول 7. مقایسه ضرایب زیری به‌دست آمده بای دو روش لیزی و فتوگرامتری در جهات مختلف

<table>
<thead>
<tr>
<th>روش حسابی</th>
<th>ماکت با زیری پایین</th>
<th>ماکت با زیری بالا</th>
<th>محور عمودی</th>
<th>محور افقی</th>
</tr>
</thead>
<tbody>
<tr>
<td>لیزی</td>
<td>14/2</td>
<td>15</td>
<td>14/6</td>
<td>3/6</td>
</tr>
<tr>
<td>استرلو 1</td>
<td>12/9</td>
<td>5/5</td>
<td>4/2</td>
<td>4/7</td>
</tr>
<tr>
<td>استرلو 2</td>
<td>13/4</td>
<td>3/5</td>
<td>4/2</td>
<td>4/7</td>
</tr>
</tbody>
</table>

کرد. عدد 11 برای ماکت با زیری بالا در روش لیزی بوده که میزان محاسبه شده آن به روش فتوگرامتری به ترتیب 10/9 و 13/4 می‌باشد. به نظر می‌رسد مقدار برآورد شده از روش فتوگرامتری اندکی کمتر از مقدار برآورد شده از روش لیزی در ماکت با زیری بالا باشد. به طور کلی می‌توان گفت که در تمام موارد در جهت 2 زیری بالاتر نسبت به 4 مشاهده می‌شود.

محاسبه حداکثر نگهدارش سطحی خاک (MDS) (Depressional Storage)

دقت ۵۰٪ روش محاسبه حداکثر نگهدارش سطحی (MDS) خاک با استفاده از مدل رقمی دیفرانسیل‌زایی به‌دست آمده از کرانه‌های (13) و (با خالی کردن چالاها) (14) پیمایش می‌شود. در بررسی اثرات مجموعه GIS با استفاده از چالاها (13) و (با خالی کردن چالاها) (14) می‌باید به ارتفاع مورد بررسی قرار گرفت که نمونه‌ها به شکل 13 ارتفاع شده‌اند. همانطور که
جدول 8 میزان محاسبه شده برای دو روش برای هر مکت بر حسب میلی متر

<table>
<thead>
<tr>
<th>مکت با زیری بالا</th>
<th>استرتوک تکرار اول</th>
<th>استرتوک تکرار دوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>زیری بیلا</td>
<td>0/78</td>
<td>0/76</td>
</tr>
<tr>
<td>زیری پایین</td>
<td>0/23</td>
<td>0/31</td>
</tr>
</tbody>
</table>

شکل 13. نمودار تجمعی میزان مساحت مکت در ایجاد حداکثر تکه‌سازی سطحی با توجه به ارتفاعات جهات‌ها
شکل 12. نمودارهای میزان حجم آب ذخیره شده توسط چاله‌ها

در نمودار شکل 12 مشاهده می‌شود که میزان حجم آب ذخیره شده در چاله‌ها به مدت زمان ۱۸۰ بار در نیمی از چاله‌ها به مرحله نهایی دستیابی می‌کند. در این نمودار، سطح چاله‌ها به‌عنوان وسیله اصلی ذخیره‌گذاری آب در این منطقه کاربرد داشته است. در مکات با زیری پایین تر از نمودار نقش‌های بیشتری از میزان واقعی تخمین می‌باشد. منحنی زمانی این نمودار نشان می‌دهد که سطح چاله‌ها به حداقل میزان حجم آب ذخیره شده در چاله‌ها در زمان ۱۸۰ بار در نیمی از چاله‌ها به مرحله نهایی دستیابی می‌کند. در این نمودار، سطح چاله‌ها به‌عنوان وسیله اصلی ذخیره‌گذاری آب در این منطقه کاربرد داشته است.
بحث و نتایج گیری

پارامترهای مقاومت از سطح خاک مانند ارتفاع، ضریب زیری تصادفی به منظور مقایسه دو روش فتوترامتری و لیزری به کار رفت. نتایج بدست آمده نشان داد که روش لیزری روش دقیق تر بوده و با توجه به پرداختن تکنیک برای جزئیات پیشرفته را بهتر ثبت می‌کند و حتی می‌تواند برداشت‌های فضای خالی بین آنها را نشان دهد. اما روش فتوترامتری نیز می‌تواند حالتی سطح خاک را نشان دهد و در بعضی قسمت‌ها با دقت بالایی میزان ارتفاع را به‌دست آورد. به طور کلی روش لیزری قادر به نشان دادن دقت کامل‌تر همراه با ارتفاعات شیبی شده است.

نمونه‌های دیگری زمین بر روی فتوترامتری دارای سطح ترمیمی می‌باشد، مخصوصاً در مکان‌هایی که بخاطر تغییرات جوی باchat سطح قابل هنگام بوده است.

در آخر پیشنهاد می‌شود برای پیش‌رسی دقت این روش را خاک لخت و پارک‌های مختلف خاک در مزرعه سطح مورد آزمایش قرار داده. از طرفی میزان تغییرات سطحی نیز بسیار نزدیک به واقعیت می‌باشد. در این مطالعه بر خلاف اظهار حسنر و کلیک (11) به میزان تغییرات سطحی در یک مورد 24 درصد بیش از میزان واقعی آن بدست آمده. علت اصلی تخمین بالا و یا پایین تر از میزان واقعی را می‌توان در تعداد جهان‌هایی از ارتفاع بالا مشاهده کرد.

