تخمین ظرفیت زراعی و نقطه پذیرشگی دایم از روي برخی خصوصیات فیزیکی و شیمیایی خاک

چکیده
اطلاعات از وضعیت حدود رطوبتی ظرفیت زراعی و نقطه پذیرشگی دایم، در برنامه‌ریزی های آبیاری و مدیریت زراعی بسیار مهم است. تعیین دقیق‌ی ان حدود با استفاده از سطح‌های صفحه شاری صربت مگر، لیکن این کار به‌طور عمومی و کم‌گذار، و در عین حال امکانات مورد نیاز آن در همه آزمایشگاه‌ها پایه نمی‌شود. بنابراین، با تخمین ان حدود از روی برخی ویژگی‌های شیمیایی و فیزیکی خاک، می‌توان اطلاعات مناسبی از توانایی تغذیه‌ریزی رطوبت خاک به دست آور. در این مقاله ۳۳ نمونه خاک از نقاط مختلف استان‌های اصفهان و چهارمحال و بختیاری تهیه گردیدند. در انتخاب نمونه‌ها سعی شد دامنه و سرعتی از انواع خاک‌های موجود برداشت گردد. پس از انتقال خاک‌ها به آزمایشگاه، درصد اندازه‌دیده درصد مواد آهی، ظرفیت تبادل کاتیون‌های PWP و FC، به کمک روش‌های P writer به صورت متوالی، به صورت مرهظه، رابطه PWP و FC با سایر خصوصیات خاک را بدست آوردند. در این رابطه منفی برای عدد گردن به صورت متوالی، به صورت مرهظه، رابطه PWP و FC با سایر خصوصیات خاک بررسی گردید. نتایج نشان داد که FC با درصد شن، درصد ماده آلی و ظرفیت تبادل کاتیون‌های خاک رابطه قوی دارد. به طوری که این سه میزان در مدل چند متغیری وارد می‌شود (۰.۹۶/۷۰/۲) و سایر متغیرهای وارد نمی‌گردند. همچنین، PWP نیز با درصد سنگه، ماده آلی و ظرفیت تبادل کاتیون‌های خاک وارد می‌شود (۰.۹۵/۱۰/۲). ابتدا برای استفاده (AWC)، سایر متغیرهای شن و R برابر به صورت PWP با آن‌ها گردیدند. به طور کلی، نتایج حاصله کوئی پیامدهایی خاص است. ابتدا می‌توان از سایر ویژگی‌های خاک استفاده نمود.

واژه‌های کلیدی: ظرفیت زراعی، نقطه پذیرشگی دایم، FC، PWP، استفاده، روش‌های گردوسیونی

مقدمه
خاک مخزن تغذیه‌ریزی رطوبت نیازهای گیاهی است. خاک‌های مختلف مقادیر متغیری آب در خونه می‌دارند که بافت و توزیع اندازه خالی و فرآیندهای بستگی دارد (۲۳، ۲۴ و ۲۵). برای این‌ها، به ترتیب مرتبی و استفاده خاک‌شناسی، دانشکده‌های کشاورزی، دانشگاه‌های صنعتی استفاده

۱. به ترتیب مرتبی و استفاده خاک‌شناسی، دانشکده‌های کشاورزی، دانشگاه‌های صنعتی استفاده

۲. به ترتیب مرتبی و استفاده خاک‌شناسی، دانشکده‌های کشاورزی، دانشگاه‌های صنعتی استفاده

۳. به ترتیب مرتبی و استفاده خاک‌شناسی، دانشکده‌های کشاورزی، دانشگاه‌های صنعتی استفاده

۴. به ترتیب مرتبی و استفاده خاک‌شناسی، دانشکده‌های کشاورزی، دانشگاه‌های صنعتی استفاده

۵. به ترتیب مرتبی و استفاده خاک‌شناسی، دانشکده‌های کشاورزی، دانشگاه‌های صنعتی استفاده

۶. به ترتیب مرتبی و استفاده خاک‌شناسی، دانشکده‌های کشاورزی، دانشگاه‌های صنعتی استفاده

۷. به ترتیب مرتبی و استفاده خاک‌شناسی، دانشکده‌های کشاورزی، دانشگاه‌های صنعتی استفاده

۸. به ترتیب مرتبی و استفاده خاک‌شناسی، دانشکده‌های کشاورزی، دانشگاه‌های صنعتی استفاده

۹. به ترتیب مرتبی و استفاده خاک‌شناسی، دانشکده‌های کشاورزی، دانشگاه‌های صنعتی استفاده
علم و فنون کشاورزی و منابع طبیعی/جلد چهارم/شماره اول/پاییز ۱۳۷۹

ظرفیت زراعی (۱) حد بالای آب قابل استفاده یوده، و مقدار آبی است که پس از خروج آب قابل در خاک گهگاهی می‌شود.

تحت پوششی آب قابل استفاده (PWP) تعطیل ۲۳ دامنه ای است، و اعتقاد به این است که گیاه در آن به طور غیرقابل برگشت دچار تنش خشکی و پوششی می‌گردد. حد اقل نیش‌ای به برکه‌های خاک باز است. حد اقل نیش‌ای به برکه‌های خاک، نباید به نوعی تراکم سیستماتیک‌های ریشه و وضعیت الکتریکی نیش‌ها و پوشش‌ها تعیین داده شود. حد اقل نیش‌ای به برکه‌های خاک، نباید به نوعی تراکم سیستماتیک‌های ریشه و وضعیت الکتریکی نیش‌ها و پوشش‌ها تعیین داده شود. حد اقل نیش‌ای به برکه‌های خاک، نباید به نوعی تراکم سیستماتیک‌های ریشه و وضعیت الکتریکی نیش‌ها و پوشش‌ها تعیین داده شود. حد اقل نیش‌ای به برکه‌های خاک، نباید به نوعی تراکم سیستماتیک‌های ریشه و وضعیت الکتریکی نیش‌ها و پوشش‌ها تعیین داده شود.

با توجه به اینکه در خاک‌های مایع، می‌توان گفت که در حد اقل نیش‌ای به برکه‌های خاک، نباید به نوعی تراکم سیستماتیک‌های ریشه و وضعیت الکتریکی نیش‌ها و پوشش‌ها تعیین داده شود. حد اقل نیش‌ای به برکه‌های خاک، نباید به نوعی تراکم سیستماتیک‌های ریشه و وضعیت الکتریکی نیش‌ها و پوشش‌ها تعیین داده شود. حد اقل نیش‌ای به برکه‌های خاک، نباید به نوعی تراکم سیستماتیک‌های ریشه و وضعیت الکتریکی نیش‌ها و پوشش‌ها تعیین داده شود.

باید توجه داشت که در خاک‌های مایع، می‌توان گفت که در حد اقل نیش‌ای به برکه‌های خاک، نباید به نوعی تراکم سیستماتیک‌های ریشه و وضعیت الکتریکی نیش‌ها و پوشش‌ها تعیین داده شود. حد اقل نیش‌ای به برکه‌های خاک، نباید به نوعی تراکم سیستماتیک‌های ریشه و وضعیت الکتریکی نیش‌ها و پوشش‌ها تعیین داده شود.

1. Field Capacity
2. Permanent Wilting Point
نتایج و بحث
برخی خصوصیات فیزیکی و شیمیایی خاک‌های مورد مطالعه در جدول ۱ ارائه گردیده است. همان‌گونه که ملاحظه می‌شود، بافت خاک‌ها از رسی سیلی گر اسیلوس تا لوم شی طبیعی تبدیل کرده‌اند. کانون‌های خاک‌ها بین حدود ۱۳ تا ۱۶ سانتی‌متر پر گیل کلورامون خاک مشابه است. به طور کلی، انواع مختلفی از نمونه‌های خاک مورد مطالعه قرار گرفته، به گونه‌ای که در هر این توضیح ندایه‌داری رطوبت خاک بسیار مهم است. بررسی منابع مختلف نشان می‌دهد اکثر اثرات یک مدل وحدت برای بیان و ارتباط خواص فیزیکی و شیمیایی خاک با توزیع رطوبت، توزیع اندازه ذرات به توزیع اندازه روزنه‌ها و خاک‌هایی در تبعیض قدرت ترکیب‌های رطوبت خاک بسیار مهم است. بررسی مدل‌های توزیع اندازه ذرات (۱) منحنی کامل مشخصه آب خاک از روز خصوصیات فیزیکی خاک‌های توزیع نموده‌اند.

توصیه اندازه ذرات، توزیع اندازه خلخ و فرجه و توزیع اندازه خاک‌های مربوط دست‌انداز. این پژوهشگران قصد دارند نسبت توزیع اندازه ذرات به توزیع اندازه روزنه‌ها و خاک‌هایی در تبعیض قدرت ترکیب‌های رطوبت خاک بسیار مهم است. بررسی منابع مختلف نشان می‌دهد اکثر اثرات یک مدل وحدت برای بیان و ارتباط خواص فیزیکی و شیمیایی خاک با توزیع رطوبت، توزیع اندازه ذرات به توزیع اندازه روزنه‌ها و خاک‌هایی در تبعیض قدرت ترکیب‌های رطوبت خاک بسیار مهم است. بررسی مدل‌های توزیع اندازه ذرات (۱) منحنی کامل مشخصه آب خاک از روز خصوصیات فیزیکی خاک‌های توزیع نموده‌اند.

مواد و روش‌ها
۳۳ نمونه خاک از نقاط مختلف استان‌های اصفهان و چهارمحال و بوشهر تهیه شد. نمونه‌های خاک از اعماق ۳۰ تا ۳۰ سانتی‌متری مناطق درجه‌دسته شدند. نسخه‌آباد، سمیرم،...
جدول 1. برخی ویژگی‌های فیزیکی و شیمیایی خاک‌های مورد مطالعه

<table>
<thead>
<tr>
<th>شماره محل نمونه</th>
<th>شن</th>
<th>سیلت</th>
<th>روس</th>
<th>باقت مواد آلی</th>
<th>فرآیند (درصد)</th>
<th>(dS/m)</th>
<th>(cmol/kg)</th>
<th>خاک پداسی (%)(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CL</td>
<td>38</td>
<td>38</td>
<td>24</td>
<td>درصد</td>
<td>8/6</td>
<td>6/2</td>
<td>1/1</td>
</tr>
<tr>
<td>2</td>
<td>CL</td>
<td>29</td>
<td>41</td>
<td>30</td>
<td>درصد</td>
<td>1/7</td>
<td>6/3</td>
<td>1/1</td>
</tr>
<tr>
<td>3</td>
<td>CL</td>
<td>37</td>
<td>42</td>
<td>22</td>
<td>درصد</td>
<td>1/7</td>
<td>6/3</td>
<td>1/1</td>
</tr>
<tr>
<td>4</td>
<td>CL</td>
<td>31</td>
<td>37</td>
<td>22</td>
<td>درصد</td>
<td>1/7</td>
<td>6/3</td>
<td>1/1</td>
</tr>
<tr>
<td>5</td>
<td>CL</td>
<td>32</td>
<td>28</td>
<td>28</td>
<td>درصد</td>
<td>1/7</td>
<td>6/3</td>
<td>1/1</td>
</tr>
<tr>
<td>6</td>
<td>CL</td>
<td>33</td>
<td>28</td>
<td>24</td>
<td>درصد</td>
<td>1/7</td>
<td>6/3</td>
<td>1/1</td>
</tr>
<tr>
<td>7</td>
<td>SiC</td>
<td>53</td>
<td>42</td>
<td>34</td>
<td>درصد</td>
<td>1/7</td>
<td>6/3</td>
<td>1/1</td>
</tr>
<tr>
<td>8</td>
<td>SiC</td>
<td>55</td>
<td>24</td>
<td>22</td>
<td>درصد</td>
<td>1/7</td>
<td>6/3</td>
<td>1/1</td>
</tr>
<tr>
<td>9</td>
<td>L</td>
<td>26</td>
<td>25</td>
<td>29</td>
<td>لورک</td>
<td>1/7</td>
<td>6/3</td>
<td>1/1</td>
</tr>
<tr>
<td>10</td>
<td>L</td>
<td>28</td>
<td>32</td>
<td>34</td>
<td>لورک</td>
<td>1/7</td>
<td>6/3</td>
<td>1/1</td>
</tr>
<tr>
<td>11</td>
<td>L</td>
<td>42</td>
<td>25</td>
<td>47</td>
<td>سامان</td>
<td>1/7</td>
<td>6/3</td>
<td>1/1</td>
</tr>
<tr>
<td>12</td>
<td>SiC</td>
<td>25</td>
<td>45</td>
<td>9</td>
<td>چلگرد</td>
<td>1/7</td>
<td>6/3</td>
<td>1/1</td>
</tr>
<tr>
<td>13</td>
<td>SiC</td>
<td>25</td>
<td>44</td>
<td>14</td>
<td>چلگرد</td>
<td>1/7</td>
<td>6/3</td>
<td>1/1</td>
</tr>
<tr>
<td>14</td>
<td>SiC</td>
<td>36</td>
<td>44</td>
<td>20</td>
<td>چلگرد</td>
<td>1/7</td>
<td>6/3</td>
<td>1/1</td>
</tr>
<tr>
<td>15</td>
<td>SiC</td>
<td>40</td>
<td>43</td>
<td>17</td>
<td>چلگرد</td>
<td>1/7</td>
<td>6/3</td>
<td>1/1</td>
</tr>
<tr>
<td>16</td>
<td>SiC</td>
<td>46</td>
<td>22</td>
<td>14</td>
<td>چلگرد</td>
<td>1/7</td>
<td>6/3</td>
<td>1/1</td>
</tr>
<tr>
<td>17</td>
<td>SCL</td>
<td>25</td>
<td>63</td>
<td>22</td>
<td>زین‌شهر</td>
<td>1/7</td>
<td>6/3</td>
<td>1/1</td>
</tr>
<tr>
<td>18</td>
<td>SCL</td>
<td>28</td>
<td>55</td>
<td>18</td>
<td>زین‌شهر</td>
<td>1/7</td>
<td>6/3</td>
<td>1/1</td>
</tr>
<tr>
<td>19</td>
<td>SiL</td>
<td>28</td>
<td>65</td>
<td>12</td>
<td>لرگان</td>
<td>1/7</td>
<td>6/3</td>
<td>1/1</td>
</tr>
<tr>
<td>20</td>
<td>SiL</td>
<td>14</td>
<td>64</td>
<td>12</td>
<td>فلارد</td>
<td>1/7</td>
<td>6/3</td>
<td>1/1</td>
</tr>
<tr>
<td>21</td>
<td>SiL</td>
<td>19</td>
<td>56</td>
<td>10</td>
<td>فلارد</td>
<td>1/7</td>
<td>6/3</td>
<td>1/1</td>
</tr>
<tr>
<td>22</td>
<td>SiL</td>
<td>24</td>
<td>74</td>
<td>19</td>
<td>سمیرم</td>
<td>1/7</td>
<td>6/3</td>
<td>1/1</td>
</tr>
<tr>
<td>23</td>
<td>SiL</td>
<td>56</td>
<td>58</td>
<td>14</td>
<td>رودشته</td>
<td>1/7</td>
<td>6/3</td>
<td>1/1</td>
</tr>
</tbody>
</table>

منابع:
- میانگین
- انحراف معیار
- تغییرات
جدول ٢. تأثیر رگرسیون خطی سه‌پیکر در دصد رطوبت در ظرفیت زراعی، نقطه پی‌مرده‌گی دایم و آب تا پایان استفاده با یک برداشت‌های خاک

<table>
<thead>
<tr>
<th>پاک‌فرش</th>
<th>نقطه پی‌مرده‌گی دایم</th>
<th>ظرفیت مزرعه</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد رس</td>
<td>٠/٤٢*</td>
<td>٠/٩٢**</td>
</tr>
<tr>
<td>درصد سیلت</td>
<td>٠/٩٢*</td>
<td>٠/٨٩**</td>
</tr>
<tr>
<td>درصد شن</td>
<td>٠/٨٩*</td>
<td>٠/٨٩**</td>
</tr>
<tr>
<td>درصد مواد آلی</td>
<td>٠/٨٩*</td>
<td>٠/٨٩**</td>
</tr>
<tr>
<td>CEC</td>
<td>٠/٩٢**</td>
<td>٠/٩٢**</td>
</tr>
</tbody>
</table>

*و ** به ترتیب غیرمعنی‌دار و معنی‌دار در سطوح ٠/٠٠٠ و ٠/٠٠٠ ارائه شده است.

هپستگی بین FC و درصد رس، ناشی از تنوع رنگ در خاک‌های مورد مطالعه است. از آن جا که پرسی هپستگی‌های سه‌پیکر شانسی می‌دهد که درصد رطوبت در ظرفیت زراعی، نیازی به یک پارامتر هپستگی معیار دارد، بنابراین استفاده از یک مدل چند متغیره ممکن است تخمین دقیقتری از درصد رطوبت ظرفیت زراعی ارائه کند. این عمل از طریق تغییرات ارائه شده در جدول ١، به‌طور متوسط برای این خاک‌ها، تا زمان آن که بودن و پیش‌بینی آن تبدیل به نقش‌سز است. در جدول ٣ ضریب‌های ضریب هپستگی و خطای استاندارد برای مراحل مختلف فرآیند پارامترهای تامپرد به مدل شناسایی شده است. معادله چند متغیره تخمین که برای تخمین FC پیش از ورود به سیستم به مدل به دست می‌آید، به صورت زیر است.

\[FC = ٢٧/٠٨٠ - ٠/٢٢ Sand\% + ٠/١٠ OM\% + ٠/٢ CEC \]

\[r = ٠/٩٧** \]

\(r \) = ضریب هپستگی

\(\text{CEC} \) = مقدار آب‌های بی‌پهنگی

\(\text{OM} \) = مقدار آلاینده

\(\text{Sand} \%) = مقدار آب‌های بی‌پهنگی

می‌باشد و هدایت الکتریکی آنها شناخت می‌دهد که خاک‌ها به جز خاک‌های نسبتاً خشک و مخازن از طریق تغییرات ارائه شده در جدول ١، به‌طور متوسط برای این خاک‌ها، تا زمان آن که بودن و پیش‌بینی آن تبدیل به نقش‌سز است. در جدول ٣ ضریب‌های ضریب هپستگی و خطای استاندارد برای مراحل مختلف فرآیند پارامترهای تامپرد به مدل شناسایی شده است. معادله چند متغیره تخمین که برای تخمین FC پیش از ورود به سیستم به مدل به دست می‌آید، به صورت زیر است.

\[FC = ٢٧/٠٨٠ - ٠/٢٢ Sand\% + ٠/١٠ OM\% + ٠/٢ CEC \]

\[r = ٠/٩٧** \]

\(r \) = ضریب هپستگی

\(\text{CEC} \) = مقدار آب‌های بی‌پهنگی

\(\text{OM} \) = مقدار آلاینده

\(\text{Sand} \%) = مقدار آب‌های بی‌پهنگی

می‌باشد و هدایت الکتریکی آنها شناخت می‌دهد که خاک‌ها به جز خاک‌های نسبتاً خشک و مخازن از طریق تغییرات ارائه شده در جدول ١، به‌طور متوسط برای این خاک‌ها، تا زمان آن که بودن و پیش‌بینی آن تبدیل به نقش‌سز است. در جدول ٣ ضریب‌های ضریب هپستگی و خطای استاندارد برای مراحل مختلف فرآیند پارامترهای تامپرد به مدل شناسایی شده است. معادله چند متغیره تخمین که برای تخمین FC پیش از ورود به سیستم به مدل به دست می‌آید، به صورت زیر است.

\[FC = ٢٧/٠٨٠ - ٠/٢٢ Sand\% + ٠/١٠ OM\% + ٠/٢ CEC \]

\[r = ٠/٩٧** \]
جدول 3. ترتیب رگرسیون چند متغیره برای درصد رطوبت در ظرفیت زراعی (FC) و پرخی ویژگی‌های وارداد

<table>
<thead>
<tr>
<th>شیئیت استاندارد</th>
<th>ضریب‌های استاندارد</th>
<th>ضریب‌های معادله</th>
<th>پارامتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/85</td>
<td>12/88</td>
<td>33/87 Sand%</td>
<td>درصد سن</td>
</tr>
<tr>
<td>0/94</td>
<td>3/24</td>
<td>22/87 Sand%</td>
<td>CEC</td>
</tr>
<tr>
<td>0/97</td>
<td>2/41</td>
<td>22/87 Sand%</td>
<td>درصد مواد آلی</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11/87 CEC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6/87 OM%</td>
<td></td>
</tr>
</tbody>
</table>

مقداری از پهلوی

\[PWP = \frac{0}{13} \text{OM} + \frac{1}{3} \text{CEC} + \frac{1}{45} \text{ slee%} + (1) \]

در جدول 4 نتایج تجزیه واریانس مدل نهایی رگرسیون چند متغیره FC

<table>
<thead>
<tr>
<th>F</th>
<th>MS</th>
<th>SS</th>
<th>df</th>
<th>منبع</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/6/82**</td>
<td>309/22</td>
<td>911/67</td>
<td>34/21</td>
<td>مدل</td>
</tr>
<tr>
<td>2/40</td>
<td>24/41</td>
<td>19</td>
<td>خطا **</td>
<td>معادل در سطح 0/01</td>
</tr>
</tbody>
</table>

مدل تخمین

در جدول 2 نتایج همبستگی های ساده خود با درصد رطوبت جرمی در نقطه پژمرده یوام (PWP)، با ها یک از پارامترهای فیزیکی و شیمیایی اراضی شده است. چنان‌که ملاحظه می‌شود، با درصد سن، درصد سیلت، درصد مواد آلی و ظرفیت PWP تبادل کاتیوئی همبستگی معنی‌دار (در سطح 0/01) دارد. درصد رس با درصد رطوبت در نیز مانند FC ارتباط معنی‌داری ندارد که با تاثیر فیلیپسون در (8) مشابهت دارد. بیشترین ضریب همبستگی مربوط به ظرفیت تبادل کاتیوئی است.

در مورد نقطه پژمرده یوام دایر خط مستقیم در نیز مانند ظرفیت زراعی، بیش از یک مترگی دارای همبستگی معنی‌دار بوده و بیان‌یابن‌گی استفاده از رگرسیون چند متغیره و مرحله ایجاد کاری‌پذیری است، نا تخمین دقیق تری از PWP به دست آید. در جدول 5 مراحل مختلف ورود متغیرهای به مدل تخمین PWP مختلف نشان داده شده است. چنان‌که ملاحظه می‌شود، به‌طور ترکب‌بندی دوا به ورود ظرفیت تبادل کاتیوئی، درصد سیلت و درصد مواد آلی به مدل میزان همبستگی مدل چند متغیره افزایش می‌یابد. مدل چند متغیره نهایی برای تخمین PWP که پس از ورود سه متغیر به دست می‌آید به صورت زیر است:

\[\text{AWC=} \frac{1}{2}\text{ Sand%} + \frac{2}{3}\text{ CEC} \]

1. Available Water Content
جدول ۵. تنا胜利 رگرسیون دچند متغیره بین درصد رطوبت در تنطه پرورشی دایم (PWP) و پریگی های خاک

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>MSE</th>
<th>ضریب اجزای معادله</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/۸۷</td>
<td>8/۰۱</td>
<td>0/۴۲ CEC CEC</td>
</tr>
<tr>
<td>0/۹۲</td>
<td>3/۷۲</td>
<td>0/۳۲ CEC + 0/19 Silt</td>
</tr>
<tr>
<td>0/۹۵</td>
<td>3/۹۳</td>
<td>0/۱۳ CEC + 0/۶۵ OM</td>
</tr>
</tbody>
</table>

جدول ۶. تنا胜利 تجزیه باریترات مدل نهایی رگرسیون دچند متغیره

<table>
<thead>
<tr>
<th>منبع</th>
<th>P</th>
<th>MS</th>
<th>SS</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل</td>
<td>0/۱۳/۲۹</td>
<td>0/۲۹/۷۱</td>
<td>0/۷۲/۵۹</td>
<td>۱۹</td>
</tr>
<tr>
<td>خطا</td>
<td>0/۲۸/۳۲</td>
<td>0/۲۸/۳۲</td>
<td>0/۲۸/۳۲</td>
<td>۱۹</td>
</tr>
</tbody>
</table>

*** معنی دارد در سطح ۰/۰۱

است (با این فرض که پس از اتمام معنی مثال ۳ تا ۳ روز پس از آبیاری، میزان زه‌کشی به صورت نزدیک می‌شود)، به علاوه، در سیستم‌های کشاورزی فارابی، آبیاری عملاً مانع از رسیدن رطوبت خاک به PWP می‌شود، و گیاهان به طور طبیعی با FC پیش‌تر روی رو می‌شوند. همچنین، محاسبه عمق آبیاری، بر مبنای رساندن رطوبت خاک به حد نظری زراعی صورت می‌گیرد. بنابراین، پیشنهاد می‌شود مدل این به شده برای تخمین منابع مورد استفاده

1. سیاست‌های عوض، و. زبانی، ۱۳۸۸. تعیین مقدار کامل مشخصه آب خاک توسط خصوصیات فیزیکی خاک. خلاصه مقالات ششمین کنگره علوم خاک ایران، دانشگاه فردوسی، مشهد ص ۳۱۱

