تعیین اثر ریشه درختان پده و گزاره مقاومت برشی خاک ساحل کارون در محل

محمود شفاعی بجنن و محمد سلیمی گل شیخی

چکیده

در دهه اخیر پژوهش‌های بسیاری در باره اثر ریشه گیاهان مختلف بر ویژگی‌های مکانیکی خاک بوده و بر اساس مقاومت برش گزاره‌هایی برای مسئله میزان اثر افزایش مقاومت برشی خاک ارائه شده است. که از آن جمله می‌توان به آزمایش برخه بلکه‌های خاک و ریشه در محل اشکاره نمود. در پژوهش حاضر با استفاده از این روشه به منظور تعیین اثر ریشه درختان پده و گزاره افزایش مقاومت برشی خاک، آزمایش‌هایی در منطقه ملاجانی در محل کاروئ انلاین اجرا گردیده. نتایج دربرگیرنده، اثر افزایش مقاومت برشی خاک بر روی بلکه‌های خاکی طراحی و ساخته شده، سپس در پایه مورد نظر، آزمایش برخ 4-آزمایش روبی بلکه‌های خاک بدون ریشه به عناوان شاهد، 4-آزمایش روبی بلکه‌های با ریشه درختان پده و 4-آزمایش با بلکه‌های ریشه درختان پده نتایج اندازه گیری مورد نیاز در برخ ریشه‌های خاکی طراحی و ساخته شده، سپس در پایه مورد نظر، آزمایش برخ 5-آزمایش برخی خاکی گردیده، و در واقع هر کمی درون این آزمایش برای درختان پده علی تراکم ریشه بیشتر بیشتر از درختان پده بوده است.

واژه‌های کلیدی: بیوتکنیک، برخ، در محل، بلکه‌های خاک و ریشه، مقاومت برشی خاک

مقدمه

فوستر سواحل رودخانه‌ها، شیب‌های طبیعی و تراکم‌های در حوضه‌های آبیز، علاوه بر وارد آوردن خصائص سنگین به اینجا مجاور آن باعث از بین رفتن زمین‌ها و خاک‌های مستعد می‌گردد. از این رو، ثابت نشده است که زمین‌ها یا موردن به‌هناست.
نمونه‌ها را در فواصل 10, 20, 30 و 45 سانتی‌متری از لبه بالایی استوانه برش داده، میزان جه جابجایی و نهایت مقاومت برشی نمونه‌هایی در حالت برش را برای یک سرعت ثابت انتزاع گرفت.

برای نتایج گرفتن که رشته یونجه بیشتر تأثیر را در آزمایش مقاومت برشی خاک دارد (9).

والدرون و داکسپان (10) برای ترویج مدل‌های محاسباتی یک سری آزمایش‌های جدید انجام دادند. آنها در استوانه به قطرهای 20 و 25 سانتی‌متر را با حداکثر سرعت دو تایی را در آزمایش‌های مربوط به تریپ درون آنها جو کرده‌اند. بر اساس این کار، کمتر از 5 میلی‌متر در دقیقه برش داده، میزان مقاومت برشی در گیاه را محاسبه و نتایج گسترده‌تر را در لابی ترکیم رشته بیشتر، تأثیر زیادی دارد.

از محققان دستگاه برش مستقیم در آزمایش‌های سه‌بعدی، جدول 9 استوار شدیداران. در این مطالعه، زمان‌بندی، سرعت و موقعیت درون برش و این نتایج تا حد وابستگی به آنها در این آزمایش‌ها می‌باشد. در حالی که رشته‌گی خاک در حالت جو و وجود دران است. افزایش مقاومت برشی نیز باعث افزایش پایداری سواحل و شیب‌های خاکی می‌گردد.

در بررسی فرآیند واکنش مجموعه‌های خاک و رشته‌چین فرض شده است که توربو کولومب برای مقاومت برشی خاک صادق است (1):

$$S = C + \sigma_t \tan \phi$$

که در این رابطه $$S$$ مقاومت برشی خاک (C-سیبندگی، $$\sigma_t$$ میزان جه جابجایی و $$\phi$$ اصطکاکی که به‌طور کلی در این آزمایش‌ها تأثیر دارد (8).

زایمر (12) نتیجه نشان داده این قطعی درختان برتشپری‌های طبیعی از آزمایش برش در محل استفاده کرد.

وی نتایج یک بلوک خاک همراه با رشته را انتخاب و با دقت تمام خاک اطراف این بلوک را حفر کرد. سپس اطراف بلوک خاک و رشته را به صفحات فلزی محصور کرد. این بلوک با چکی که در جلوی آن یک نیروسنج رنگی نصب شده بود با سرعت 9/7 سانتی‌متر در دقیقه بجو رانده شد. وی سعی کرد که میان چرم جریانی موجود در خاک و میزان مقاومت برشی خاک را اطمینان بحفظ داشته باشد.

در گزارش و نحوه کاملاً (11) به آزمایش برش در محل برای محاسبه مقاومت برشی خاک اثر رشته گیاهان
نمی‌ران چا به جایی بلوک به کمک یک عقربه اندازه‌گیری گردید. اشتهار به دستگاه مقاومت بررسی خاک در آزمایشگاه (9)

شعر 1 نموده انجام آزمایش، و شعر 2 نموده انجام آزمایش‌ها را به نشان می‌دهد.

و او و والسون (12) آزمایش برش در محل را برای نمایش اثر ریشه درختان کاج در جنگل خاکستری نیوزیلند و مقاومت بررسی خاک انجام دادند. محل آزمایش دارای پروفیل خاک یک‌ناوخت‌سوزه و ستون‌های گزار و گیاهان مذکور در آن وجود داشته است. بلوک‌های مورد نظر شامل سه‌گانه ریشه درختان 2-6 ساله، قطر بین‌رشته‌ها، ان کمتر از 2 سانتی‌متر، و 2بار آن به سیلیکات گردیده است. در این آزمایش‌ها، نموده درخت مورد نظر را انتحاب و قسمت‌های بالایی‌ان را از محلی در نزدیکی زمین قطع می‌کردند. آن گاه، یک بلوک خاک و ریشه به ابعاد 180 متر و به عمق 10 متر جدا می‌کردند. به طوری که ساقه در مرکز سطح آن قرار گیرد، و با نصب جک
بازه‌ای از ساحل رودخانه کاروان که وضعیت نسبتاً پایداری دارد، اصطلاحاً دردشماری درختان غیربرنورسی و پده نسبتاً مناسب، و پس دسترسی به آن برای انجام آزمایش‌ها امکان‌پذیر است. در نتیجه، روستایی حاصل می‌شود که به‌طور کلی، در نتیجه بی‌روشی، به‌طور کلی، در نتیجه بی‌روشی
وجود ریشه درختان نیاز به تهیه پبولکهای مربوط به و دست
نخوردهای است که ذهبی‌ها وجود برش مستقیم که
معمولاً در آزمایشگاه‌های مکان‌های خاک وجود دارند، چنین
توانایی‌ها را ندارند. از این رو، نخست یک دستگاه بررسی در
محل ساخته شد. این دستگاه از دو بدنه جدا می‌باشد که
است. قسمت اول شامل مخزن روان‌های هیدرولیکی، الکتروموتور،
پمپ هیدرولیکی، دندهای، شیک کننده دیگر و شیک کننده
وضعیت، سوپاپ کننده فشار و کلید رونش و ناوی می‌باشد.
که این مجموعه در کنار یک‌دکتر روی یک جفت صحرای قرار
می‌گیرد. تا پایان آن را با راحتی جا به جا کرد. شیک کننده سه
وضعیتی برای تهیه روند و خروج روان‌های هیدرولیکی به
مقدار است، و با آن توانایی میله جک را به جلو و
عقب ورده. قسمت دوم شامل جک هیدرولیکی درون‌هوا و یک
عقربه شارکرسی دریای اندام‌گیری دریای روانی، و یک
عقربه شارکرسی برای اندام‌گیری دریای روانی، و یک
عاده‌گیری جا به جا باید طولی میله جک است. شکل ۴ نمایی از
دستگاه ساخته شده را نشان می‌دهد.

مزیات سرعت جا به جا میله خروجی را می‌توان با تنظیم
مزیات در روان‌های هیدرولیکی توسط شبکه مخصوص تنظیم کرد.
همچنین، با توجه به ابعاد بلوک‌های جا به جا می‌توان
حداقلی شارکرسی به کار رفته با به‌گونه‌ای تنظیم کرد که به
عقربه‌های شارکرسی دریای آسیب وارد نگردد. عقربه‌ای که شده روی
جک در حیطه‌ی مزان شارکرسی دریای داخل جک یا میزان نیرو در
واحد سطح مقطع پیستون را نشان می‌دهد. همچنین، در جملو
میله خروجی که قطع آن چهار سانتی‌متر است. یک صفحه
دارای شکل شکل به قطر ۱۵ سانتی‌متر نصب شده تا نیروی وارد از
ظرف جک به طور کنونی در بسط جاتی بهبود می‌باشد.

گردد.

برای انجام آزمایش، حدود بیست درخت غرب و باد، و ده
محل به عنوان شاهد به نظر گرفته شد، و بلوک برای انجام
آزمایش وارد نمی‌گردد. به‌طوریکه به عنوان شاهد به نظر گرفته شد و
چهار درخت غرب و باد درخت یک انتخاب گردد. در انتخاب

درختان سعی از نظر سنی با هم متفاوت باشند تا قطع
ریشه‌های توت می‌آیند آنها از یک نمونه به نمونه دیگر فرق داشته
باشند. همچنین سعی گردید از درختان که به سبب عوامل
دیگر آسیب دیده‌اند استفاده نگردد. در مجاورت درختان نقش
چهار بلوک خاک بدون ریشه به عنوان شاهد انتخاب شد. در
انتحاب موقعیتی این بلوک‌ها سعی گردید تا ریشه‌ها خاک،
مشاهده بلوک‌های باد بریشان است، یا نتایج حاصل از بلوک‌های
ریشه‌های از توانایی آنها مقایسه کرد.

برای نهایت و ماسیسی بلوک‌ها نخست قسمت‌های سالیان
درخت از حال و مقدار قطب شد. سپس تا پایه بلوک هک قرار
بود آزمایش شد. چهار بلوک‌هایی به که ارفع
طوری در نظر قطب‌گذاری که از مرکز
چهار بلوک قرار گرفت. برای آزمایش‌ها با بلوک
۱۰٪ ویژه در میان گرفت، و تا در بیش از آزمایش‌ها که کمی می‌رفت
توسعه ریشه در مقدار بلوک در انتهای گسترده‌ترین
باشد. از بلوک ۱۰٪ استفاده شد. نمونه شاهد در این آزمایش‌ها
نیز با همین ابعاد انتخاب گردید. آن گاه خاک اطراف
چهار بلوک به فاصله یک دور از چهار بلوک
سانتی‌متر) به صورت عمیق خاک برداشت گردید تا پیک توانش‌های
در پایین طرف بلوک به مقدار ۵/۰ ابعاد بلوک. سپس سطوح
جانی بلوک در یک صفحه شده، بلوک به به‌آماده مورد نظر پرای
آغاز آزمایش آماده گردید. به‌دست این ریشه‌هایی که از سطوح
جانی بلوک خارج شده می‌شود، دقت و تهیه از قطع
می‌گردد تا دست خود بلوک‌ها به چیزی که در بست
برسد. شکل ۵ بلوک‌های آماده شده را نشان می‌دهد. در جدول
۱ مشخصات اولیه بلوک‌ها و بریش از ریزگی‌های خاک اثرن
شهد است.

پس از آماده شدن بلوک، در یک سمت آن یک صفحه فلزی
صب گذاشته می‌شود. و در دیگر این صفحه جک هیدرولیکی
به گونه‌ای نصب می‌گردد که شات خروجی از جک در وسط
صفحه فلزی قرار گیرد. پشت جک به سطح کوپید و لوله‌ان
عمق یک تا دو متر نسبت می‌باید تا در حین آزمایش جک از

31

Downloaded from ilu.journals.iut.ac.ir at 20:39 IRDT on Friday, September 11th 2020.
شکل ۴. نمایی از دستگاه مقاومت پرشی در محل

شکل ۵. بلکهای آماده آزمایش

جدول ۱. مشخصات اولیه بلکهای مورد آزمایش

| Ar/A | Ar | دارصد رس | نوع خاک | رطوبت | سطح مقطع بلک | ابعاد بلک (متر) | شماره بلک | رنگرفت
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۳۰۰</td>
<td>۱۱۶۲</td>
<td>۱۱۶۴</td>
<td>۱۴</td>
<td>۱۴۵۲</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
</tr>
<tr>
<td>۲۳۰۰</td>
<td>۱۱۶۲</td>
<td>۱۱۶۴</td>
<td>۲۰</td>
<td>۲۸۴۲</td>
<td>۲۰</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td>۲۳۸۰</td>
<td>۱۱۸۴</td>
<td>۱۱۸۰</td>
<td>۱۴</td>
<td>۱۱۰۱</td>
<td>۱۰</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
</tr>
<tr>
<td>۲۳۸۰</td>
<td>۱۱۸۰</td>
<td>۱۱۸۰</td>
<td>۲۰</td>
<td>۲۸۴۲</td>
<td>۲۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td>۲۴۸۰</td>
<td>۱۲۰۲</td>
<td>۱۲۰۲</td>
<td>۱۲</td>
<td>۱۲۰۲</td>
<td>۱۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
</tr>
<tr>
<td>۲۴۸۰</td>
<td>۱۲۰۲</td>
<td>۱۲۰۲</td>
<td>۱۲</td>
<td>۱۲۰۲</td>
<td>۲۰</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td>۲۵۰۰</td>
<td>۱۲۲۰</td>
<td>۱۲۲۰</td>
<td>۱۶</td>
<td>۱۵۰۰</td>
<td>۱۶</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
</tr>
<tr>
<td>۲۵۰۰</td>
<td>۱۲۲۰</td>
<td>۱۲۲۰</td>
<td>۱۶</td>
<td>۱۵۰۰</td>
<td>۲۰</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
</tr>
</tbody>
</table>

A = مجموع سطح مقطع بلکهای عبوری از سطح برش (متر مربع)
Ar = سطح مقطع بلکهای عبوری از سطح برش (متر مربع)
Ar/A = مجموع سطح مقطع بلکهای عبوری از سطح برش (متر مربع)
در مورد بلکهای خاک و ریشه به دو و بلکهای خاک و ریشه گز نشان می‌دهد. در این شکل‌ها منحنی رنگ در پایین جا به چنین برای بلکهای شاهد نیز رسم شده است. حداکثر نیروی را که باعث تخریب بلکهای سطح است نشان می‌دهد. این می‌تواند به دو قسمت تقسیم شود. قسمت اول منحنی نشان‌دهنده رشد شیب سطحی از این شکل‌ها برای هر بلک تغییر یافته است. همگنی که بلک را به حالت شکست کامل بررسی کنیم، نشان می‌دهد که این می‌تواند به جایی کاهش محصولات اقاقیا می‌آیند. این موضوع برای بلکهای خواب اریخ نیز صادق است. به دوی هنگامی که ریشه‌های درخت به یکدیگر افتاده، نیروی مقدار مقاومت کششی خود بررسی می‌شود. در این حالت، این مقاومت می‌تواند به حالت شکست کامل بررسی شود. از این، به دنبال انجام آزمایش‌ها و تحقیقات به کمک آن گرفته می‌شود. شکل ۶ نحوه انجام آزمایش‌ها را نشان می‌دهد.

در خانه‌ای آزمایش، خاک بلکهای خواب گیاهان به دو و یا به دقت دردآوریده می‌شود تا رشد گیاه به طور کامل مشخص گردد. اگر گیاه اطلاعات مربوط به رشد گیاه به سطح مقطع برش شامل شدت آن و نحوه توزیع رشد گیاه به سطح مقطع. با استفاده از این داده‌ها، مجموع سطح مقطع رشد گیاهی که از مقعع پشت عبور کردهاند (A)، محاسبه و از تقسیم آن بر سطح مقطع برش (L) نسبت سطح مقطع رشد به سطح کل محاسبه شد. نتایج محاسبه فوق برای چهار ترکیب خود را به دیده و چهار ترکیب خود را به دیده. سرانجام، با همین روش ۱۲ آزمایش صورت گرفت و داده‌های حاصل در جدول ۳ ارائه شده است.

نتایج و بحث

با استفاده از داده‌های جدول ۲ نخست مقادیر نیروی وارده بر بلک محاسبه می‌شود. برای محاسبه نیروی به کار رفته، مقادیر فشار اندوزگیری شده بر حسب بار (kg/m²) در سطح مقطع پسته جک (J) و شتاب نیرو بی‌بسته به بسته بندی می‌گردد. مقادیر نیروی وارد به کلینوپیون به دست آمد. نتایج حاصل در برابر چاپ می‌باشد. می‌باشد به ترتیب مقدار نیروی اندوزگیری شده را در برابر چاپ می‌باشد به ترتیب

33
شکل 6. نحوه انجام آزمایش بررسی مستقیم در محل با استفاده از جک هیدرولیکی

پدید

شکل 7. نمودار نیرو در برای جایگاه بررسی بلکهای خاک با ریشه درخت پده و بلکهای شاهد

رابطه تعیین میزان افزایش مقاومت بررسی خاک به منظور تعیین رابطه میان ویژگی‌های ریشه و میزان افزایش مقاومت بررسی خاک در پایان هر آزمایش نسبت مجموع سطح ریشه درخت گردزنده ساله به میزان ۶۹ درصد به مقاومت خاک اضافه کرده است.
جدول 2. اطلاعات به دست آمده از آزمایش‌های مقاومت پرشی در پاژه‌ای از کارون

<table>
<thead>
<tr>
<th>کریز</th>
<th>شاهد 1</th>
<th>شاهد 2</th>
<th>شاهد 3</th>
<th>پایه 1</th>
<th>پایه 2</th>
<th>پایه 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm Bar</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
</tr>
<tr>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
</tr>
<tr>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
</tr>
<tr>
<td>70</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
</tr>
<tr>
<td>80</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
</tr>
<tr>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
</tr>
<tr>
<td>100</td>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
<td>105</td>
<td>106</td>
</tr>
<tr>
<td>110</td>
<td>111</td>
<td>112</td>
<td>113</td>
<td>114</td>
<td>115</td>
<td>116</td>
</tr>
<tr>
<td>120</td>
<td>121</td>
<td>122</td>
<td>123</td>
<td>124</td>
<td>125</td>
<td>126</td>
</tr>
<tr>
<td>130</td>
<td>131</td>
<td>132</td>
<td>133</td>
<td>134</td>
<td>135</td>
<td>136</td>
</tr>
<tr>
<td>140</td>
<td>141</td>
<td>142</td>
<td>143</td>
<td>144</td>
<td>145</td>
<td>146</td>
</tr>
<tr>
<td>150</td>
<td>151</td>
<td>152</td>
<td>153</td>
<td>154</td>
<td>155</td>
<td>156</td>
</tr>
<tr>
<td>160</td>
<td>161</td>
<td>162</td>
<td>163</td>
<td>164</td>
<td>165</td>
<td>166</td>
</tr>
<tr>
<td>170</td>
<td>171</td>
<td>172</td>
<td>173</td>
<td>174</td>
<td>175</td>
<td>176</td>
</tr>
<tr>
<td>180</td>
<td>181</td>
<td>182</td>
<td>183</td>
<td>184</td>
<td>185</td>
<td>186</td>
</tr>
<tr>
<td>190</td>
<td>191</td>
<td>192</td>
<td>193</td>
<td>194</td>
<td>195</td>
<td>196</td>
</tr>
<tr>
<td>200</td>
<td>201</td>
<td>202</td>
<td>203</td>
<td>204</td>
<td>205</td>
<td>206</td>
</tr>
<tr>
<td>210</td>
<td>211</td>
<td>212</td>
<td>213</td>
<td>214</td>
<td>215</td>
<td>216</td>
</tr>
<tr>
<td>220</td>
<td>221</td>
<td>222</td>
<td>223</td>
<td>224</td>
<td>225</td>
<td>226</td>
</tr>
<tr>
<td>230</td>
<td>231</td>
<td>232</td>
<td>233</td>
<td>234</td>
<td>235</td>
<td>236</td>
</tr>
<tr>
<td>240</td>
<td>241</td>
<td>242</td>
<td>243</td>
<td>244</td>
<td>245</td>
<td>246</td>
</tr>
<tr>
<td>250</td>
<td>251</td>
<td>252</td>
<td>253</td>
<td>254</td>
<td>255</td>
<td>256</td>
</tr>
</tbody>
</table>

(aksi kullanarak)
شکل ۸ نمودار تیرو در پرای چا به جای برای بلکهای خاک با ریشه درخت گز و بلکهای شاهد

جدول ۳ حداکثر تیروی گسختگی و مقاومت بریش بلکهای آزمایش شده

<table>
<thead>
<tr>
<th>تیرو آزمایش</th>
<th>مقاومت بریش (کیلوییون بر مترمربع)</th>
<th>سطح بلک (متر مربع)</th>
</tr>
</thead>
</table>
جدول 4: خلاصه نتایج مربوط به افزایش مقاومت بریش بلک‌های خاک با ریشه

<table>
<thead>
<tr>
<th>آر/آ</th>
<th>در صد افزایش مقاومت بریش (کیلویون بر مترمربع)</th>
<th>نعمت آزمایشی</th>
<th>نعمت شاهد</th>
<th>پیدا</th>
<th>پیدا 1</th>
<th>پیدا 2</th>
<th>پیدا 3</th>
<th>گز 1</th>
<th>گز 2</th>
<th>گز 3</th>
<th>گز 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/01322</td>
<td>20</td>
<td>2/8</td>
<td>شاهد 1</td>
<td>پیدا 1</td>
<td>پیدا 2</td>
<td>پیدا 3</td>
<td>گز 1</td>
<td>گز 2</td>
<td>گز 3</td>
<td>گز 4</td>
<td></td>
</tr>
<tr>
<td>0/01324</td>
<td>22</td>
<td>2/8</td>
<td>شاهد 2</td>
<td>پیدا 1</td>
<td>پیدا 2</td>
<td>پیدا 3</td>
<td>گز 1</td>
<td>گز 2</td>
<td>گز 3</td>
<td>گز 4</td>
<td></td>
</tr>
<tr>
<td>0/01326</td>
<td>24</td>
<td>2/8</td>
<td>شاهد 3</td>
<td>پیدا 1</td>
<td>پیدا 2</td>
<td>پیدا 3</td>
<td>گز 1</td>
<td>گز 2</td>
<td>گز 3</td>
<td>گز 4</td>
<td></td>
</tr>
<tr>
<td>0/01328</td>
<td>26</td>
<td>2/8</td>
<td>شاهد 4</td>
<td>پیدا 1</td>
<td>پیدا 2</td>
<td>پیدا 3</td>
<td>گز 1</td>
<td>گز 2</td>
<td>گز 3</td>
<td>گز 4</td>
<td></td>
</tr>
<tr>
<td>0/01330</td>
<td>32</td>
<td>2/8</td>
<td>شاهد 5</td>
<td>پیدا 1</td>
<td>پیدا 2</td>
<td>پیدا 3</td>
<td>گز 1</td>
<td>گز 2</td>
<td>گز 3</td>
<td>گز 4</td>
<td></td>
</tr>
<tr>
<td>0/01332</td>
<td>32</td>
<td>2/8</td>
<td>شاهد 6</td>
<td>پیدا 1</td>
<td>پیدا 2</td>
<td>پیدا 3</td>
<td>گز 1</td>
<td>گز 2</td>
<td>گز 3</td>
<td>گز 4</td>
<td></td>
</tr>
<tr>
<td>0/01334</td>
<td>34</td>
<td>2/8</td>
<td>شاهد 7</td>
<td>پیدا 1</td>
<td>پیدا 2</td>
<td>پیدا 3</td>
<td>گز 1</td>
<td>گز 2</td>
<td>گز 3</td>
<td>گز 4</td>
<td></td>
</tr>
</tbody>
</table>

تحقیق گیری

برای درخت گز

\[\Delta S = 729.91(Ar/A)^2 \quad \text{رُیسی} = 0.95 \]

و برای درخت پیده

\[\Delta S = 423.03(Ar/A)^2 \quad \text{رُیسی} = 0.677 \]

نتایج مقطع ریشه‌های عبوری از سطح برش به سطح بلک، به نسبت سطح مقاومت ریشه‌ها به کل سطح مقاومت بلک، و نسبت سطح مقاومت دریافتی افزایش مقاومت بریش بر حسب کیلویون بر متر مربع می‌باشد.

مقدار ضریب \(K \) با استفاده از روش مجدار مربوط به مقاومت افزایش بلک‌های خاک به روش Excel و استخراج این مقدار، می‌توان از آزمایش بریش در محل با استفاده از دستگاه طراحی شده در این پژوهش، به عنوان یک روش می‌باشد. به طور خلاصه از آزمایش تناج‌زیر استخراج گردید:

1. با توجه به اینکه انجام آزمایش بریش در آزمایشگاه مستلزم برداشت نمونه‌های دست‌نخورده از محل می‌باشد، و

این می‌توان از آزمایش بریش در محل با استفاده از دستگاه طراحی شده در این پژوهش، به عنوان یک روش می‌باشد. محدودیت این روش این است که ریشه‌های درخت که در مسیر برش قرار گرفتند، نباید باشد.
سپاسگزاری
از سازمان مدیریت منابع آب ایران به خاطر تامین بهتری از
هزینه‌های مالی طرح (قرارداد شماره ۱۵۰۰/۱۵۰۰/۱۱/۱/۷/۷۸)، و از
همکاری آقای مهندس شیخ داوودی عضو هیئت علمی گروه
ماشین‌های کشاورزی دانشگاه شهید چمران اهواز در طراحی
دستگاه سنجش مقاومت پرشی خاک تشویق و قدردانی می‌گردید.
همچنین، از سه داور محترم که با مطالعه پیش‌نویس این مقاله
پیشنهادهای ارزش‌های ارائه کرده‌اند سپاسگزاری می‌شود.

rahbari.png

شکل 9. تغییرات افزایش مقاومت پرشی خاک با ریشه گز در برای تغییرات A_r/A.

شکل 10. تغییرات افزایش مقاومت پرشی خاک با ریشه پره در برای تغییرات A_r/A.

راهبردي در تعیین وزنگی‌های واقعی این نوع خاک‌ها استفاده
کرد.

2. ریشه‌های گیاهان، به ویژه درختان، می‌توانند به صورت
چشمگیری باغ افزایش پارامترهای مقاومتی خاک گردد. از
این وزنگی‌های می‌توان در پروژه‌های یونجه‌کنی و تثبیت سواحل و
شیب‌ها استفاده کرد.

3. ریشه گیاه گر به طور متوسط بخشی از رویه درخت پده
با افزایش مقاومت پرشی خاک می‌گردد.

4. میزان افزایش مقاومت پرشی خاک به حساب منطقه مقطع
ریشه‌ها به واحد مقطع خاک رابطه مستقیم خاتم دارد.
متابع مورد استفاده
1. ابن جلال، ر. و. م. شفاعی پرستان. 1370. اصول نظری و عملی موانع خاک ساحل کاروان در محل