ویژگی‌های جذب سطحی روي در برخی از خاک‌های زیرکشت برنج استان فارس

چکیده

از آن جا که بازیابی ظاهری روى در خاک‌های معبدی (غرق‌پایی و غیر قریب‌پایی) تاجزی می‌باشد، بررسی دقیق فرآیندهایی که باعث ایجاد روي در خاک می‌شود اهمیت ویژه‌ای دارد. لذا در یک مطالعه آزمایشگاهی، ویژگی‌های جذب سطحی روی در درست خاک آلیکی زیرکشت برنج، با خصوصیات فیزیکی و شیمیایی متغیر مرد بررسی قرار گرفت. و برآشته در برنج نتوسط هم‌داهنده فیزیکی و آنالیز مورب در آزمایشگاه‌های آزمایش دوگرم خاک دربیه روا در 44 ساعت با 100 میلی‌لیتر محلول 0/0/0/0 مولا رکش و کم‌ریز 500 میلی‌گرم روي در یک طیب‌البعدها، نتایج نشان داد که ناهنجاری‌های اولیه روی در محلول تغذیه بود. علاوه بر آن، از درآمدهای جذب این عصر با هم دامنه‌ای لانگ مویر، در قسمت خاکی مناطع به دست آمد که احتیاجی یانگرگ در محل جذبی با میل ترکیبی متغیر برای روی می‌باشد. ضریب مناسب با انرژی پیوندی به‌طور اول (0/00)، بنی در خاک‌های کم محلول تغذیه، پیشرفت و حمایت‌کننده جذب (0/00) کمتر از بخش دوم (خاک‌های زیاد محلول تغذیه) بود. بنابراین، به نظر می‌رسید که در بخش اول محل جذبی به همراه انرژی پیوندی بیشتر و در بخش دوم، به واسطه ریفت جذبی زیادی از اهمیت ویژگی‌های برخوردار باشد. حاکمی فیزیکی جذب سطحی روی در بخش دوم حاصل از هم‌داهنده لانگ مویر (0/00) با مقدار رس، کربنات کلسیم معادل و غلظت فسفر بیوم قالب استفاده هم‌ساخت مثبت، و با ظرفیت نسبی

کانی‌های همبستگی منفی نشان داد.

واژه‌های کلیدی: هم‌داهنده لانگ مویر، هم‌داهنده لانگ مویر، حداکثر جذب، کربنات کلسیم معادل، ظرفیت تبادل کاتیونی

مقدمه

کمک به روی یکی از شاخص‌های معبدی عناصر غذایی کمصرف کاتیونی در خاک‌های آلیکی و قلیایی، و محساسیت خاک‌های آلیکی کشت برنج به حساب می‌آید. علیناهی آن کم

1. استاد حاشیه‌پایی، دانشکده کشاورزی، دانشگاه شیراز
2. دانشجوی سابق کارشناسی ارشد حاشیه‌پایی، دانشکده کشاورزی، دانشگاه شیراز

71
(حذافک حذافک و K (ضرب متاسب با انرژی پیوندی)، بیش از همه‌ها ی جذب فاندلینج، بعضی معادله‌ها 1 و 3 مورد استفاده گرفته‌اند.
برخی همه‌ها ی جذب سطح‌روی با معادله‌ها فاندلینج و لانگمورد به وسیله پوژه‌های زیادی گزارش شده است (15، 19، 25، 27، 29، 32 33، 35 و 36). البته و کنار (11) اظهار می‌کند که رسانه‌ها قادر به تغییرات شرایط رئیب، حتی پس از تغییر تبدیل کانیکوئی بوده، در پ-های نی‌زدیک به خشکی یا حسی، این بیان‌های معول روابط و جذب سطحی و یا روابط بین هدف و محور تهیه‌رسید و کریپت‌ها و یا محبوب شدن آن در شیکه‌های بلورین کاتی‌ها، از عوامل اصلی کمیتی قابل‌استفاده روی در خاک‌های آهکی (غرقایی و غیرغراقایی) به حساب می‌آید (27 و 28).
از همه‌ها، جذب برای مطالعه‌های نگهداری روی در خاک استفاده شده است. هم‌اکنون به‌تازه‌های زیادی جذب سطحی روز و غلظت پوژه نیز در محول تعداد شان می‌دهند. تاکنون معادله‌های مختلف برای توصیف و پیش‌بینی رابطه پیشنهاد گردیده است که در معادله فاندلینج (معادله 1) و لانگمورد (معادله 2) بیش از همه مورد استفاده واقع شده است:

\[
X = kC^a
\]

(۱)

\[
X = -\frac{KbC}{(1 + KC)}
\]

(۲)

در این معادله، X مقدار روی جذب شده (میلی‌گرم در کیلوگرم) خاک C غلظت نهایی روی در محول تعداد (میلی‌گرم در لتر) و n و b ضریب جدا روی می‌باشد. در عمل، عمل گردیدن یا از شکل‌های مختلف این دو معادله به منظور بررسی داده‌ها استفاده می‌شود.

\[
\log X = \log k + \frac{1}{n}\log C
\]

(۳)

\[
\frac{C}{X} = \frac{1}{Kb} + \left(\frac{1}{b}\right)C
\]

(۴)

نکته شایان توجه‌اکنون است که همه‌ها جذب لانگمورد (معادله‌های ۲ و ۴) به علت اهمیت فیزیکی دو ثبت آن یعنی
یژگر‌های جذب سطحی روی در برخی از خاک‌های زیر کشت برخی استان‌های فارس

هدف‌های تحقیق حاضر عبارت بود از: ۱) بررسی میزان ژنبه روی در تعدادی از خاک‌های آمیزه‌ای زیر کشت پرینت در استان‌های فارس، یا استان‌های دیگر ناحیه‌های جذب فرودنلیج و لانگ‌موری، ۲) تعیین ضرایب جذب سطحی ژنبه روی در این خاک‌ها، ارزیابی رابطه کیفی میان این ضرایب و بعضی از ویژگی‌های فیزیکی و شیمیایی خاک‌های تحت مطالعه.

مواد و روش‌ها

خاک‌های مورد استفاده در این تحقیق، از شمال صفر تا ۳۰ ضرایب متری آرزویی شلتوک کاری شده استان‌های فارس تهیه گردید. این خاک‌های که در سال‌های طولانی زیر کشت برخی تحت کشت بوده، پس از اقلا را (آزمایشگاه) به وسیله دو میلی‌متری بی‌بی‌دی داده شدند. بخشی از خصوصیات فیزیکی و شیمیایی، از قبیل جیزه‌کن‌کنی به روش بوستيونیر (۶)، ماده آلومین سیم و بیلکا (۴)، پ. هاش خمیر اشراق توسط الکترود شیمیایی، تحلیل تبادل کاتیون‌ها به وسیله روش چانشینی کاتیون‌ها با استان دسیم (۸) کربنات کلسیم معدال به روی خشک کردن با استفاده توسط سیلیک سدیم (۸) و ۲۰۰ دهی با (۲۰) از این خاک عصاره گیری شده و غلتک آنها به ترتیب با استفاده از دستگاه رنگسنجی و جذب اتمی تعیین گردید (جدول ۱).

جدول ۱

| تعداد خاک | در داخل لوله سانترپیوزی ریخته، به آن مدل | ۴۰ میلی‌لیتر از محلول‌های روی با شست‌گذاری ۶۰۰۰ و ۵۰۰ میلی‌گرم در لیتر) به صورت سولفات‌های روی، و در فرآیند تولید (به منظور جلوگیری از ریز جانداران)، زیستی شهد. برای ثابت نگه‌داری تریپین قدرت یونی، محلول‌های روی در کلسیم کلرید ۴۰۰ مولار تهیه گردید. نمونه‌ها به مدت ۳۰ دقیقه در به هم زن مکانیکی تکان داده شد و پس از ۲۴ ساعت سکون در دمای ۲۵ درجه سانتی‌گراد، مجدداً به مدت ۳۰ دقیقه دیگر به هم زده شد. پس از آن لوله‌ها به مدت ۱۰ دقیقه در حدود ۹۰۰ گرم سانترپیوزی و
فلوئت نها‌ی ثابت در محصول شماره (سیلی‌گرم در لیتر)

شکل ۱. پرازش داده‌ها با دمای جذب سطحی نرمالی به در خاک‌های ۱ تا ۸
جدول ۲. ضرایب مربوط به برایش داده‌های جذب روی یا هم‌دمای فرودنی

<table>
<thead>
<tr>
<th>شماره خاک</th>
<th>ضرب تبیین (R²)</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۰/۹۸**</td>
<td>۱</td>
</tr>
<tr>
<td>۲</td>
<td>۰/۹۱**</td>
<td>۲</td>
</tr>
<tr>
<td>۳</td>
<td>۰/۹۱**</td>
<td>۳</td>
</tr>
<tr>
<td>۴</td>
<td>۰/۹۷**</td>
<td>۴</td>
</tr>
<tr>
<td>۵</td>
<td>۰/۹۳**</td>
<td>۵</td>
</tr>
<tr>
<td>۶</td>
<td>۰/۹۹**</td>
<td>۶</td>
</tr>
<tr>
<td>۷</td>
<td>۰/۹۴</td>
<td>۷</td>
</tr>
<tr>
<td>۸</td>
<td>۰/۹۲</td>
<td>۸</td>
</tr>
</tbody>
</table>

** و ***: به ترتیب معنی‌دار در سطح ۰/۰۵ و ۰/۰۱ درصد.

سطحی با معادله فرودنی همه‌اهنگ در دانش و به صورت یک قسمت سنتی. نتایج متابولی توسط پژوهشگران دیگر (۲۳ و ۲۷) نیز گزارش شده است. ولی درجه (۱) با برایش داده‌های جذب سطحی روی در مورد نمونه خاک آهنی غیر غرافی با معادله فرودنی مه‌دامای دو و سه قسمتی را گزارش نمود.

شواکلا و میتال (۲۳) نیز جذب سطحی روی آر چند نمونه از خاک‌های هندستان با بافت‌های مختلف مرور آزمایش قرار داده و تناوب مشابه دست یافتند.

هر چند برایش داده‌های جذب سطحی روی یا هم‌دمای جذب لانگ سیستم مطابقت شفت، اما مشاهده شد که هم‌دمایهای دو سطحی (معادله ۶) بهتر می‌تواند این داده‌ها را توصیف نماید:

\[
X = [(K_b, C)/(1 + K_b, C) + [(K_b, C)/(1 + K_b, C)]\]

در این معادله، \(K_b \) و \(K_b, C \) به ترتیب ضریب مناسب با انرژی پئونی و برای سطح اول و دوم، به ترتیب حداکثر جذب برای سطح اول و دوم، و غرافی در محلول تاکلیف می‌باشد.

برای نتایج هم‌دمای جذب روی توسط معادله ۶ در شکل‌های ۲ و ۳ به صورت دو سطحی ارائه گردید. و چهار
شکل ۲. برآورد شده‌ها با هم‌دامای دویختی جذب لاگ می‌تواند در خاک‌های ۱ تا ۴ (الف: غلظت محلول تعادل از پنجمیلگرم در لیتر، ب: غلظت محلول تعادل بین از پنجمیلگرم در لیتر)
شکل ۳. پرازش داده‌ها با میله‌تای دوربخشی چسب سطحی لانگ مویر در خاک‌های ۸ تا ۵ (الف: غلظت محلول تعادل کمتر از پنج میلی‌گرم در لیتر، ب: غلظت محلول تعادل بیش از پنج میلی‌گرم در لیتر)
جدول 3: ضرایب مربوط به پرازش داده‌های جذب روی با هم‌مادی لانگ مومر در سطحی

<table>
<thead>
<tr>
<th>R_e</th>
<th>R_f</th>
<th>K_1/K_2</th>
<th>b_1/b_2</th>
<th>K_3</th>
<th>K_4</th>
<th>b_3</th>
<th>b_4</th>
<th>شماره خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>99</td>
<td>0/92</td>
<td>0/60</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>1</td>
</tr>
<tr>
<td>99</td>
<td>99</td>
<td>0/99</td>
<td>0/63</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>2</td>
</tr>
<tr>
<td>99</td>
<td>99</td>
<td>0/99</td>
<td>0/65</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>3</td>
</tr>
<tr>
<td>98</td>
<td>98</td>
<td>0/99</td>
<td>0/67</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>4</td>
</tr>
<tr>
<td>98</td>
<td>98</td>
<td>0/99</td>
<td>0/69</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>5</td>
</tr>
<tr>
<td>99</td>
<td>99</td>
<td>0/99</td>
<td>0/71</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>6</td>
</tr>
<tr>
<td>99</td>
<td>99</td>
<td>0/99</td>
<td>0/73</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>7</td>
</tr>
<tr>
<td>99</td>
<td>99</td>
<td>0/99</td>
<td>0/75</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>8</td>
</tr>
</tbody>
</table>

ملاحظه: محتوای در سطحی یک درصد

در بخش پایینی منحنی هم‌مادا در خاک‌های آهکی و سدیمی با زیاد شدید ب- هاش خاک افزایش می‌یابد. بارو (2) نیز افزایش نگهداری روی برای زیاد شدن ب- هاش خاک در دمای مختلف گزارش شده است.

آسیابیتوز (32) مقدار است نسبی از پرازش داده‌های تجاری هم‌مادا جذب لانگ مومر برای تیم مکانیسم جذب استفاده نموده و این می‌توان از طریق ریاضی ثابت کرد که مجموع دو بخش ماده‌ای لانگ مومر و چهار ضریب آن با هم منحنی هم‌مادا به صورت 1/3 باین و شده است. با این وجود، همان طور که قبل اشاره گردید، پوده‌ها معادله 1/3 مدتی از هم‌مادا جذب لانگ مومر به اندازه تیم مکانیسم جذب عناصر غذایی، از جمله روی استفاده کرده‌اند.

برای کسب اطلاع دو مکانیسم بهبودی در خاک‌های مور رازمایی در این تحقيقات تأثیر ویژگی‌های خاک بر جذب سطحی این عنصر بین ضرایب هم‌مادا لانگ مومر (جدول 2) و خصوصیات خاک (جدول 1) مطالعه گردید. شایان ذکر است که، حداکثر جذب سطحی روی با هم‌مادی لانگ مومر در نیمی از خاک‌های زیر کشت برای استان فارس و

1. L-curve isotherm
با هم‌سازی منحنی (b2)، با یک هیچ یک از ویژگی‌های خاک، همبستگی معنی‌داری نشان نداد. حال آنکه ضریب‌های ثابت منحنی دریای سد قاداح جنوب در فاصله یک منحنی (b3)، با یک از خصوصیات خاک ملاحظه گردید:

\[b_1 = 2.5 + 0.5 \text{Clay} \quad R^2 = 0.75^* \]

\[b_2 = -1.7 + 0.3 \text{CEC} \quad R^2 = 0.65^* \]

\[b_3 = 99.9 + 0.6 \text{CCE} \quad R^2 = 0.70^* \]

\[b_4 = 378.3 + 0.3 \text{P} \quad R^2 = 0.80^* \]

در این مطالعه، Clay به ترتیب درصد رس کلیسم معادل (بدن) و غلظت فسفر قابل استفاده بومي خاک (می‌گذرد در کلیسم خاک) بیشتر تشخیص یافته است. از طرفی، در هنگام کدام از مطالعه‌های 7 و 8، اضطراب کرد این مندرج مستقل دیگر سبب تغییر معنی‌دار ضریب‌های ثابت نگردید.

حداکثر چندمین روي در بخش دوم (b3)، با رس همبستگی معنی‌دار داشت. نتایج مشابهی نبودند درجه (3) و کرومیکس (25) گزارش شده است. شکلکا و میتال (33) نشان دادنی که هم‌سازی جنوب روي در خاک‌های شیل‌های زیر هم دماهی مشابهی دیده در خاک‌های قزر ندارند، و در خاک‌های هم‌سازی با خاک‌های شیل، بی‌باید و K کمتر است. همچنین، کربنیک و ملعی‌های (19)، و سیدر و هم‌سازی (35) نیز هم بستگی مثبتی بین حداقل جنوب سطحی روى و درصد رس خاک داشتند.

از این جا در گندری عابق روي در خاک‌های آمکی درود استفاده در این تحقیق، مقدار فسفر بومی قابل استفاده‌گیا، رس، ظرفیت تبادل کاتیونی و کنترلا کلیسم تشکیل مهمی اینجا می‌دانند. بازاریان برای افزایش اثراتی روی این خاک‌های، لازم است تأثیر هر کدام از این پارامترها مورد بررسی قرار گیرد. این خاک‌های در شرایط مناسب، با توجه به تغییرات در حد دریایی، که فسفر قابل استفاده در آن تا به‌طور نسبی زیاد است، کاربرد کودهای فسفردار خودداری شود. با این حال، نتیجه‌گیری مقادیر رس، ظروفیت تبادل کاتیونی و کنترلا کلیسم در مزرعه معمولاً غیرمکن است. لذا به منظور افزایش بازیافت روي مصرفی توسط گیاه....

1. B. E. T.
پژوهشی مورد استفاده

1. درجه، ز. ۱۳۶۸. ارزیابی وضعیت روز قابل استفاده گیاه به روش‌های آزمایشگاهی و گلخانه‌ای در خاک‌های منطقه زیر سد درودزن استان فارس. پایان نامه کارشناسی ارشد، دانشگاه شیراز، دانشگاه شیراز، شیراز.

