بررسی تنویع و تجزیه ضرایب مسر صفات مرتبط با کیفیت نانوایی در لایه‌های اصلاحی
ارقام زراعی و بومی گنبد

فهیمه شاهین‌یا، عبدالمجید رضایی و عباس سعیدی

چکیده

به منظور بررسی میزان تنویع و مطالعه همبستگی میان صفات مرتبط با کیفیت نانوایی از طریق تجزیه ضرایب مسر، 145 شرکت نانوایی مرکب از 90 لایه اصلاحی و 55 رقم بومی و زراعی مورد آزمایش قرار گرفتند. از صفات درصد پروتئین، حجم رسوب زلزلی، حجم رسوب زلزلی (هکتوبری)، حجم نان، درصد رطوبت نان، درصد رطوبت نان و جذب آب به عنوان عوامل هیپر سنستیم برای SDS روابط با ضرایب تغییرات استفاده شد. صفات مختص دانه، حجم رسوب زلزلی و حجم رسوب با SDS به ترتیب با ضرایب تغییرات 3/78، 3/13 و 1/10 در میزان از تنویع برخوردار بودند. نتایج تجزیه عامل‌ها نشان داد که کیفیت گرایی نش در تمام پنتاین در تغییرهای 3/78 درصدی از تنویع کل داده‌ها بود. این عوامل به ترتیب عامل شاخص پروتئین دانه و حجم نان طبیعتی شدند. نتایج مطالعه همبستگی میان صفات کیفیت پروتئینی و معنی‌دار درصد پروتئین و حجم رسوب با SDS 3/78 بی‌دیگر صفات مرتبط با کیفیت نانوایی گوشه‌دان. در گرمسیری مرحله‌ای، درصد پروتئین بی‌ضایی دهنده تغییرات میان صفات کیفیتی گوشه‌دان از تغییرات صفات کیفیت دیگر در مراحل اول و دوم به درد وارد بود. دانه و درصد، جذب آب و اثر اثر سیستم این صفات از طریق درصد بی‌پروتئینی بر تغییرات حجم رسوب با SDS بود. تجزیه خوشه‌ای بر پایه صفات کیفی نان دهنده، نظریه مطلوبی بین پروتئینی و بومی از حيث صفات مرتبط با کیفیت و کیفیت پروتئین در مقایسه با از تریپولی‌های گرده گی (به طور عمده لایه‌های اصلاحی) بود.

واژه‌های کلیدی: تنویع، تجزیه ضرایب مسر، کیفیت نانوایی گنبد

1. به ترتیب دانشجو سلیقه‌ای کارشناسی ارشد و استاد اصلاح نباتات. دانشگاه تکنیکی. دانشگاه کشاورزی. دانشگاه صنعتی اصفهان
2. عضو هیئت علمی پخش غلات مؤسسه تحقیقات اصلاح و تهیه نهال و بذر کرک
مقدمه

از ویژگی‌های کیفی مورد توجه در پارامترهای مختلف گندم، کیفیت پروتئین اندوسپرم دانسته است.

تعدادی منابع مختلف به خاطر تفاوت‌های کیفی در نسبت و اجرای ترکیبات تشکیل دهنده گلدون آرد می‌باشد. (16) گلدون، پروتئین ذخیره‌ای اصلی اندوسپرم گندم به دلیل اعضا خاصیت و سوئکوالستیک است.

به‌طور عمومی، پژوهش‌ها از نظر تولید و کیفیت پروتئین با وسیله‌های مختلف انجام می‌شوند.

تغییرات معنی‌دار شده در ارزش نانوایی ارقام مختلف به‌طور چشمگیر در تفاوت‌های کیفی در ترکیبات تشکیل‌دهنده گلدون آرد می‌باشد. (16) گلدن، یکی از ارقام مختلف ارزش نانوایی بین پیچیده است و نمی‌توان کیفیت هر کدام را بر حسب یک و ویژگی‌های بدن نمونه بیان کرد.

چنین ویژگی‌های همجوین خواص نحوه و نتیجه پیوستگی کوشر کردن، ویژگی‌های پهن و عرضی فیزیکی کوشر در کیفیت نانوایی مؤثر و حاکی ازهمینه ویژگی می‌باشد. بهترین روش در بررسی کیفیت نانوایی، تهیه آرد از زنن مورد‌پیچ و انجام آزمایش استاندارد بخشهای است. که به‌طور وقیحانه نسبتاً نیاز می‌دارد. بنابراین، می‌توان از روش‌های غیر مستقیم به مانند آزمایش نانوایی ارقام مختلف، ارزش نانوایی گندم در شناسایی ارقام مطلع به‌پره (برد (6، 9، 20 و 25). کارایی این روش‌ها به عوامل بساین و باستیک، که از جمله می‌توان به چند مورد اشاره کرد: 1. سهولت استفاده، به طوری که می‌توان تغییرات را در ارقام چرخه‌ای گوناگون می‌باشد. 2. نیاز به مقدار کم آرد (حداقل 10 نگهداشت)یک طبیعی که با ویژگی‌های مختلف ارزش نانوایی و ارزش نانوایی دانسته شده است که برای کیفیت و ارزش نانوایی اثر می‌گند. (9، 20 و 27) از این دستگاه‌های مزیت‌های پروتئین، سختی داخل به وسیله‌ای آر چه، حجم رز سوزه زنی و حجم رز سوزه نباید
بررسی تبوع و تجزیه ضرایب میزان صفات مرتبط با کیفیت نانوایی در لاکه‌های...

لاین اصلاح شده از مرکز تحقیقات سیمیت (CYMMIT) در مکزیک و 55 رقم بومی و زراعی از مناطق مختلف کشور تهیه شده‌اند. ارقام بومی طن‌سال گذشته در آزمایش‌های مختلف خاصی سازی شده‌اند، کشت ارقام در اول آذر 1376 در مزرعه سازمان تحقیقات کشاورزی اتاق اصناف در چارچوب طرح آزمایشی (Augmented design) به همراه سه رقم پایه روش و روش‌های مهندسی انجام شد. هر رقم در دو روش به طول دو متر و فاصله 20 سانتی‌متر با تراکم 350 بذر در متر مربع کشت گردید. میزان کود مصرفی 50 کیلو گرم اره 461 درصد تیترزود و 500 کیلو گرم فسفات آمونیوم در هکتار بود. کود اوره یک نوبت پیش از کشت و یک بار به صورت سری در دوره زراعی هر 10 ساله یک بار و سه بار به صورت مفرش شد. تلاش برای بهبود سه برآورد و ارتقاء سبک آب و هوای تربیت بی‌پیشی و پیشرفت روابط بین صفات کیفی و مشاهده شده‌است.

تجزیه و تحلیل آماری

روش‌های روش‌های تحلیلی مداخله مربوط به سیستم منابع و سیستم محاسبه آن زمان‌ها، انجام بوده است. برای محاسبه ضرایب ضرایب و انواع شبه انتخاب شده‌اند. همچنین، برای محاسبه ضرایب منابع بین صفات کیفی محاسبه شد. با استفاده از تجزیه و تحلیل ضرایب میلر، آمار شرایط و مورد میلر است. برای محاسبه ضرایب دیگر صفات کیفی، بر حسب میلر، سپس این آماری با استفاده از نرم‌افزار Excel و SPSS، Path-1 و ANOVA استفاده شد. (19). تجزیه آماری با استفاده از نرم‌افزار Excel.

نتایج و بحث

پایان تجزیه و تحلیل بررسیی برای پایایی یکنواختی زمین نشان داد که برای کلیه صفات کیفی تفاوت معنی‌داری بین بلوک‌ها وجود ندارد، و نیازی به تصحیح صفات برای اثر بلوک ناچار نیست.
برای نتایج جدول 1 و دیگر صفحات مورد بررسی، سنتی دانه، حجم رسوب زنی و حجم رسوب با SDS به ترتیب با ضرایب خودرداری میزان تتنوع خودرداری بودند. پس از این صفحات، درصد پروتئین دانه با ضریب تتنوع 7/7 درصد قرار داشت. از آن جا که صفات مذبور نشان داده که نتایج کمیت شده و کمیت پروتئین دانه می‌باشد، نتایج کمیت شده و کمیت پروتئین دانه می‌باشد و ارزیابی کیفی و کمی مربوط به آن در زننده‌های مورد بررسی، و تأییدگری این صفات از آثار محیطی است. بنابراین، در این توجه به آزمایش و یادگیری ارتباط دانه با پروتئین‌های بسته‌ترین کیفیت استفاده نمود.

نتایج تجزیه عامل دارا صفات مربوط با کیفیت در جدول 2 اثبات است. این تجربه نشان می‌دهد که کیفیت صنایی در عامل پنهان و روی ۸۷/۳ درصد از این توجه که با کمیت تقرری پهنا نشان داده که عامل اول همبستگی میان پروتئین در پروتئین‌های بسته‌تری ارتباط دانه‌ها را در صفات مذبور گسترش داشته است. با این مورد در بزرگ‌ترین دیگر تجربه کیفیتی از استفاده شده است.

ضرایب همبستگی (جدول 4) بین درصد پروتئین با صفات سختی دانه، درصد رطوبت دانه و جذب آب، حجم نان، حجم رسوب زنی و حجم رسوب با SDS همبستگی با پروتئین‌های بسته‌تری ارتباط دانه‌ها را در صفات مذبور گسترش داشته است. با این مورد در بزرگ‌ترین دیگر تجربه کیفیتی از استفاده شده است.

خواص فیزیکی خمیر شامل کشک، چسبندگی، تورم و صفات سختی دانه، درصد رطوبت دانه و جذب آب، حجم نان، حجم رسوب زنی و حجم رسوب با SDS همبستگی با پروتئین‌های بسته‌تری ارتباط دانه‌ها را در صفات مذبور گسترش داشته است.

آزمون سرپیچ را به عنوان معیار غیر مستقیم بایستی در نظر گرفت.

جدول 1

جدول 1	صفات	ضریب همبستگی	درصد	درصد مصرف
حجم رسوب زنی	0.52	52%		
حجم رسوب با SDS	0.48	48%		
سختی دانه	0.45	45%		
رطوبت دانه	0.42	42%		
جذب آب	0.39	39%		

جدول 2

جدول 2	صفات	ضریب همبستگی	درصد	درصد مصرف
حجم رسوب زنی	0.61	61%		
حجم رسوب با SDS	0.56	56%		
سختی دانه	0.53	53%		
رطوبت دانه	0.49	49%		
جذب آب	0.45	45%		

جدول 3

جدول 3	صفات	ضریب همبستگی	درصد	درصد مصرف
حجم رسوب زنی	0.65	65%		
حجم رسوب با SDS	0.60	60%		
سختی دانه	0.57	57%		
رطوبت دانه	0.53	53%		
جذب آب	0.49	49%		

جدول 4

جدول 4	صفات	ضریب همبستگی	درصد	درصد مصرف
حجم رسوب زنی	0.70	70%		
حجم رسوب با SDS	0.65	65%		
سختی دانه	0.58	58%		
رطوبت دانه	0.54	54%		
جذب آب	0.50	50%		

منابع

جدول 1. آمار توصیفی مربوط به صفات کیفی در حساسیت‌های مورد بررسی

<table>
<thead>
<tr>
<th>صفات</th>
<th>دوباره</th>
<th>حداکثر</th>
<th>میانگین</th>
<th>واریانس</th>
<th>پیش‌بینی</th>
</tr>
</thead>
<tbody>
<tr>
<td>سختی دانه</td>
<td>13/2/3</td>
<td>2/4/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
</tr>
<tr>
<td>حجم رسوپ زلی (میلی لیتر)</td>
<td>36/7</td>
<td>4/1/0</td>
<td>3/6/0</td>
<td>3/6/0</td>
<td>3/6/0</td>
</tr>
<tr>
<td>حجم رسوپ با SDS (میلی لیتر)</td>
<td>35/7</td>
<td>3/2/0</td>
<td>3/5/0</td>
<td>3/5/0</td>
<td>3/5/0</td>
</tr>
<tr>
<td>درصد روتیت دانه</td>
<td>8/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
</tr>
<tr>
<td>وزن هکتولیتر</td>
<td>1/0/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
</tr>
<tr>
<td>حجم رسوپ زلی</td>
<td>1/0/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
</tr>
<tr>
<td>حجم نان</td>
<td>1/0/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
</tr>
<tr>
<td>درصد روتیت دانه</td>
<td>1/0/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
</tr>
<tr>
<td>درصد جذب آب</td>
<td>1/0/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
</tr>
<tr>
<td>SDS</td>
<td>1/0/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
</tr>
<tr>
<td>پارامتر نسبی (٪)</td>
<td>1/0/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
</tr>
</tbody>
</table>

1. صفات بر اساس بیشترین ضریب توان مرتب شده‌اند.

جدول 2. پارامترهای دوران پایانه و واریانس‌های نسبی و تجمیع تجزیه عاملی برای صفات کیفی

<table>
<thead>
<tr>
<th>صفات</th>
<th>دوباره</th>
<th>میانگین</th>
<th>واریانس</th>
<th>تجمیع</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن هکتولیتر</td>
<td>1/0/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
</tr>
<tr>
<td>حجم رسوپ زلی</td>
<td>1/0/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
</tr>
<tr>
<td>حجم نان</td>
<td>1/0/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
</tr>
<tr>
<td>درصد روتیت دانه</td>
<td>1/0/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
</tr>
<tr>
<td>درصد جذب آب</td>
<td>1/0/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
</tr>
<tr>
<td>SDS</td>
<td>1/0/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
</tr>
<tr>
<td>پارامتر نسبی (٪)</td>
<td>1/0/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
<td>0/1/0</td>
</tr>
</tbody>
</table>

ملاحظه: می‌گردد، از میان صفات کیفی مورد بررسی، صفات درصد پروتئین، حجم رسوپ زلی، حجم نان، درصد روتیت دانه، وزن هکتولیتر و حجم نان در پارامترهای دوران پایانه اهمیت بالا داشته‌اند. این پارامترها، علاوه بر تأثیر آن‌ها بر صفات کیفی، می‌توانند به عنوان پیش‌بینی‌گر صفات کیفی در هنگام اندور مورد استفاده قرار گیرند.
جدول 3. رگرسیون مرحله‌ای برای صفات کیفی

<table>
<thead>
<tr>
<th>ضریب رگرسیون</th>
<th>متغیرهای وارد شده به مدل</th>
<th>متغیر نهایی</th>
<th>ضریب لاینر (درصد)</th>
<th>ضریب لاینر (درصد)</th>
<th>ضریب لاینر (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/172**</td>
<td>4/192</td>
<td>3/13</td>
<td>7/12</td>
<td>6/13</td>
<td></td>
</tr>
<tr>
<td>0/169**</td>
<td>-1/34</td>
<td>0/09</td>
<td>0/80</td>
<td>0/75</td>
<td></td>
</tr>
<tr>
<td>0/041**</td>
<td>-1/21</td>
<td>0/13</td>
<td>1/25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/099**</td>
<td>-1/53</td>
<td>0/20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/022**</td>
<td>-1/63</td>
<td>0/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/053**</td>
<td>-1/33</td>
<td>0/89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/118**</td>
<td>-1/77</td>
<td>0/35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\hat{Y} = -3.7 + 0.49 X_1 + 0.22 X_2 - 0.5 + 0.32 X_3 \]

جدول نهایی

<table>
<thead>
<tr>
<th>ضریب رگرسیون</th>
<th>متغیرهای وارد شده به مدل</th>
<th>متغیر نهایی</th>
<th>ضریب لاینر (درصد)</th>
<th>ضریب لاینر (درصد)</th>
<th>ضریب لاینر (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/371**</td>
<td>4/192</td>
<td>3/13</td>
<td>7/12</td>
<td>6/13</td>
<td></td>
</tr>
<tr>
<td>0/044**</td>
<td>0/89</td>
<td>0/08</td>
<td>0/80</td>
<td>0/75</td>
<td></td>
</tr>
<tr>
<td>0/034**</td>
<td>-1/21</td>
<td>0/13</td>
<td>1/25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/099**</td>
<td>-1/53</td>
<td>0/20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/022**</td>
<td>-1/63</td>
<td>0/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/053**</td>
<td>-1/33</td>
<td>0/89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/118**</td>
<td>-1/77</td>
<td>0/35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\hat{Y} = -1.9 + 0.96 X_1 + 0.94 X_2 - 0.5 + 0.32 X_3 \]

جدول نهایی

<table>
<thead>
<tr>
<th>ضریب رگرسیون</th>
<th>متغیرهای وارد شده به مدل</th>
<th>متغیر نهایی</th>
<th>ضریب لاینر (درصد)</th>
<th>ضریب لاینر (درصد)</th>
<th>ضریب لاینر (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/371**</td>
<td>0/97</td>
<td>0/07</td>
<td>0/80</td>
<td>0/75</td>
<td></td>
</tr>
<tr>
<td>0/044**</td>
<td>0/89</td>
<td>0/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/034**</td>
<td>-1/21</td>
<td>0/13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/099**</td>
<td>-1/53</td>
<td>0/20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/022**</td>
<td>-1/63</td>
<td>0/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/053**</td>
<td>-1/33</td>
<td>0/89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/118**</td>
<td>-1/77</td>
<td>0/35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\hat{Y} = 0.6 + 0.9 + 0.94 X_1 - 0.5 + 0.32 X_2 - 0.5 + 0.32 X_3 \]

جدول نهایی

** به ترتیب معنی‌دار در سطوح احتمال 5% و 1% درصد

** مدل نهایی
در سمت تبیین و تجزیه ضرایب مصرف صفات مرتبط با کیفیت نانوایی در لایه‌های....

جدول ۴: ضرایب همبستگی میان صفات کیفی

<table>
<thead>
<tr>
<th>صفات</th>
<th>حجم دشد</th>
<th>حجم رسوب</th>
<th>حجم نان</th>
<th>حجم رطوبت دانه</th>
<th>حجم هکتوژیرین</th>
<th>وزن هکتوژیرین</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDS با جذب آب</td>
<td>۱</td>
<td>۰.۸۵</td>
<td>۰.۳۵</td>
<td>۰.۸۴</td>
<td>۰.۹۲</td>
<td>۱</td>
</tr>
</tbody>
</table>

*و ** به ترتیب معنی‌دار در سطوح احتمال ۵ و ۱ درصد

شکل ۱: دیاگرام تجزیه ضرایب مسیر حجم رسوب با SDS و مؤثرین صفات کیفی

کهی و حجم رسوب با SDS است با یک سلول دیگر، میزان خواص کمی و کیفی پروتئین دیگر صفات مرتبط با کیفیت را تحت تأثیر قرار خواهد داد. این ارتباط موی حجم رسوب با SDS به عنوان معنی‌دار برای ارتباطی و گرفتن

83
جدول 6. تعداد گروه، مقادیر T^* کاذب هوتینگ و معبریان دوم گروه‌ها (سی. سی.)

<table>
<thead>
<tr>
<th>اتصال گروه‌ها</th>
<th>تعداد گروه‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>گروه 11</td>
<td>مشاهده 43</td>
</tr>
<tr>
<td>گروه 7</td>
<td>6</td>
</tr>
<tr>
<td>گروه 17</td>
<td>5</td>
</tr>
<tr>
<td>گروه 9</td>
<td>4</td>
</tr>
<tr>
<td>گروه 8</td>
<td>3</td>
</tr>
<tr>
<td>گروه 5</td>
<td>2</td>
</tr>
<tr>
<td>گروه 4</td>
<td>1</td>
</tr>
</tbody>
</table>

*سی. سی.

مورد بررسی را به پنجم گروه مستقل تفکیک نمود. برای تشکیل پنجم گروه، دندوگرگان حاصل (شکل ۲) در فاصله ۵/۴۴ تا میزان تغییر یافته گروه‌ها قطع شد.

در گروه‌های اول تا پنجم به ترتیب ۷/۳۵، ۵۲/۴۴ تا ۲۵/۵۲ درصد از کل زنوتیپ‌ها قرار گرفتند. نتایج حاصل از تجزیه واریانس و مقایسه میانگین‌های صفات مختلف گروه‌ها (جدول ۷) گویای واریانس سببیار معنی‌دار میانگین گروه‌ها بود. به منظور محاسبه قطع دندوگرگان و تعداد مناسب پنجم گروه در طبقه‌بندی زنوتیپ‌ها می‌باشد. شمار زیانی داشتن.
,False

شکل ۲. دندروگرام حاصل از تجزیه خوشه‌ای بستگی‌های الکتریکی بیش از ۸۶.۲۸، ۸۶.۳۱ و ۸۶.۳۳ و اعداد زرگری خارجی، و به‌خوبی اعداد زرگری و تیپ‌های ایرانی هستند.
<table>
<thead>
<tr>
<th>جمله‌ی ۱</th>
<th>جمله‌ی ۲</th>
<th>جمله‌ی ۳</th>
<th>جمله‌ی ۴</th>
<th>جمله‌ی ۵</th>
<th>جمله‌ی ۶</th>
<th>جمله‌ی ۷</th>
<th>جمله‌ی ۸</th>
<th>جمله‌ی ۹</th>
<th>جمله‌ی ۱۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>جمله‌ی ۱۱</td>
<td>جمله‌ی ۱۲</td>
<td>جمله‌ی ۱۳</td>
<td>جمله‌ی ۱۴</td>
<td>جمله‌ی ۱۵</td>
<td>جمله‌ی ۱۶</td>
<td>جمله‌ی ۱۷</td>
<td>جمله‌ی ۱۸</td>
<td>جمله‌ی ۱۹</td>
<td>جمله‌ی ۲۰</td>
</tr>
<tr>
<td>جمله‌ی ۲۱</td>
<td>جمله‌ی ۲۲</td>
<td>جمله‌ی ۲۳</td>
<td>جمله‌ی ۲۴</td>
<td>جمله‌ی ۲۵</td>
<td>جمله‌ی ۲۶</td>
<td>جمله‌ی ۲۷</td>
<td>جمله‌ی ۲۸</td>
<td>جمله‌ی ۲۹</td>
<td>جمله‌ی ۳۰</td>
</tr>
</tbody>
</table>
پرسی تنو و تجزیه ضرابی سیر صفات مرتبت با کیفیت نانوایی در لایه‌های...