ساخت و ارزیابی چرخ فلک بادی جدید برای کمابین غلات

سیدمحمدی نصیری، محمد لقوی و جواد خمیفی فر

چکیده

سالانه مقدار زیادی گندم به عنوان اصلی ترین منبع غذایی و نزدیک‌ترین استراتژیک در ایران در مراحل کاشت، داشت، برداشت، جابجایی، نگهداری و تهیه از مراحل تغیر و تبدیل و مصرف از تا به مروف. نتایج آزمون‌هایی که در استان‌های کشاورزی و همچنین بهبود مدیریت و برنامه‌ریزی کاشت و داشت محصول، نیز اصلاح و بهبود سازی ساختن ادوات و مواد شیمیایی، افزایش کمپین محصول اساسی را کاهش داد. پروژه‌هایی در زمینه طراحی، ساخت و ارزیابی چرخ فلک بادی جدید برای کمابین غلات می‌باشند که چرخ فلک بادی ناسیمی به منظور ارزیابی نهایی طرح جدید آزمون‌های آزمون‌گرهای و مزرعه‌های صورت گرفته. در آزمون‌های گره‌ها، سرعت شروع تغییر را از دهانه یک پکه انتخابی تا فاصله هر سانتی‌متر از آن، با فاصله ده سانتی‌متر، و در صورت عرض دهانه پکه اندازه‌گیری شد.

نتایج آزمون به صورت میزان توزیع جریان یا آرامش وریدی در پایان نتایج در تعداد 13 پکه برای کمابین یا عرض برش 14 سانتی‌متر (3/4) مناسب تشخیص داد. نتایج آزمون‌های مزرعه‌ای عملکرد در نوع چرخ فلک بادی و مکانیکی ثانی می‌دهد که نتایج چرخ فلک بادی هنگام برداشت به سبب برخورد نیاپشت مصنوعی و جریان خوشه و اعمال کمترین ضره به محصول، کمتر از نوع مکانیکی است. اگر از نوع مکانیکی است، سرعت پکه، تقاضا محصول به صورت خطي افزایش می‌یابد. آزمون مزرعه‌ها در سرعت‌های دو نفری 0/050، 0/06، 0/070 و 0/080 در دقیقه انجام شد و درصد نسبت به اقلام مختلف به ترتیب به ترتیب طرح بالا. کمک‌کننده محلول قابلیت تغییر مقدار تغییر در شرایط مزارع در انواع زایمیان چرخ فلک بادی و مکانیکی و جنگل داشت. برای این نتایج به دست آمده، جهت وزش باد پکه 10 درجه، و سرعت دورانی آن در دامنه‌ی ۲۰ تا ۲۷۰ دور در دقیقه نوسیده می‌شود.

واژه‌های کلیدی: کمابین، ماحیانه‌ای، برداشت، مبارزه، ماهیان آل، برداشت گیاهان زراعی، گندم، مانند‌های کشاورزی

1. به ترتیب دانشجوی سایر کارشناسی ارشد، دانشیار، و استادیار سابق مانند‌های کشاورزی، دانشکده کشاورزی، دانشگاه شیراز

181
مقدمه
گذند به عنوان اصلی ترین منبع غذا و جریان در مراحل کشت، داشت. پردازش و حتی مصرف از راهی گوناگون به هدر می‌روید. این امر نظر خاصی را برای جلوگیری از تلفات باید به‌شکلی طبیعی گزارش سالانه آمار کشاورزی ایران، در سال ۱۳۷۵ مقدار تولید گندم حادثه ۱۰ میلیون تن بوده است (۱). به‌طور اصلی در حدود ۵۰ درصد افت کمیابی به طور استاندارد، با مقدار ۳۰۰ هزار تن و با مقدار ۵ درصد، ۵۰ هزار تن تلفات ویژه دارد، ولی زیان واقعی از افراد محاصره‌شده فوق پیش‌تر است، چون رقم افت دامن در ایران بیش از این مقدار است. با این حال، توزیع‌دهنده این مشکل آنانی است که این اتفاق افتخارات ما را به سطح استاندارد رساند و از تلفات اضافی جلوگیری نمود.

افتف کمیابی در چهار قسمت سکویی برنج، کرمین، کامپان، و غیره اتفاق می‌افتد. برای پردازش این اتفاقات، فرآوری گندم به‌طور مناسب نمود (شکل ۱). از جمله وظایف این سیستم جلوگیری از افزایش تلفات به‌ویژه در اثر برگشت محسوس بوده است. با بهره‌گیری از این سیستم، افت سکویی برنج یک تن به‌دست آمده است. با همین وظا و نظر آوری برای دادن میزان کاهش ۲۲ درصد کاهش به‌دلیل کاهش سکویی برنج در سال ۱۹۷۷ در نیز مطالعاتی روی سیستم جدید برای پردازش سویا انجام شده (۲). در این مطالعات می‌بینیم به صورت ابزار کشاورزی به صورت قرار داشته روز سکویی برنج نصب شده. در می‌توانست محصول بیرده شده را هم زمان با چرخ فلک به سمت مارپیچ هدایت نماید (شکل ۲). نتایج این بررسی نشان می‌دهد که در رطوبت ۱۱ درصد، افت پردازش ۵۵ درصد کاهش می‌یابد. این افت در سرعت به‌درجه نهایی ۶/۸ متر در ثانیه اندورگیری شد (۹).

این سیستم کمکی برای تلاش محصول به سمت مارپیچ نقش از استفاده شده است. در حالی که تلفات برنج به‌مزایا ۲ درصد، با کاهش رطوبت تغییر چشمگیری نداشته است (۱۰).

گذشته از پرسری در مورد به‌ترین تنظیم‌های چرخ فلک کمیابی، در مورد روش‌های جدیدتر تأکید به‌پردازش‌های صورت گرفته است. در این پردازش‌ها از جریان باد، به‌صورت چکی سیستم کمکی برای احداث محصول به سمت مارپیچ نیاز است. در حالی که به‌دلیل تغییر رطوبت برنج این سیستم کمکی برای مراحل محسوب به سمت مارپیچ نیاز است. به‌دنبال کاهش سکویی، به‌دنبال کاهش رطوبت باد، به‌دنبال کاهش رطوبت برنج این سیستم کمکی برای احداث محصول به سمت مارپیچ نیاز است.

نمونه‌برداری از چهار باد در سال ۱۹۷۹ درصد در پردازش به‌دلیل کاهش زمان بنا به نگه چرخ فلک مکانیکی، بازده پردازش

۱. طبق گفته وزیر کشاورزی در استان کرمان تلفات کمیابی حدود ۳۰ درصد غزارش شده است (کنگره مهندسی مهندسی های کشاورزی و مکانیکاسن، مرداد ۱۳۷۷).
2. Cutting platform
3. Threshing unit
4. Straw walker
5. Sieves
6. Reel
در عرض کمباین قرار دارد، برای تولید باعث استفاده شده است. سرعت چرخشی پرونده در دامنه 2,000 دور در دقیقه می‌باشد. به خاطر برخورداری تک‌درنگ، چرخش فلک و محصول، از هدر رفتن حضور ۱۶۵ کیلوگرم گندم در هکتار جلوگیری می‌شود. طرح یاد شده از نوع تجارتی بوده و نتایج پژوهش علمی آن گزارش شده است.

با توجه به پژوهش‌های انجام شده گذشته، طرحی با هدف کم‌کردن برخورداری مکانیکی میان محصول و چرخش فلک کمباین برای کاستن افت مردوبه به چرخش فلک ارائه شده است. در این طرح از فشار ایجاد شده توسط پنجه، برای خم کردن ساقه محصول و راندن آن به طرف تیغه و مارپیچ نقله سکویی پرش محصولات ریزدانه را افزایش می‌دهد. به‌دلیل منظره سیستمی را طراحی نموده که روی چرخ فلک نوع اگشته نصب گردید. برای شکل ۳ حجییران ایجاد شده به طرف تیغه‌ها به‌رنگ وزیده و باعث می‌شود محصول برای برده شده برای مارپیچ رانده شود. سرعت با خروجی از افشاننده‌ها در این برسی حدود ۷/۴ متر در ثانیه بوده (۳/۴). طبق پژوهش‌های چهارساله دانشگاه ایلینوی این طرح می‌توانست حدود ۶۲ درصد از افت محصول جلوگیری کند.

در سال ۱۹۹۱ با استفاده از جریان‌های سوزنی چرخ فلک به‌نام ورتكس ۱ توسط یک شرکت کانادایی ساخته شد. مطالعه شکل ۲ از یک پنجه نوع جریان مماسی، که در یک محفظه لازم‌بود.

1. Vortex air reel
کمیابی استفاده شده است.
هدف از طراحی سیستم چرخ فلک بادی، گسترش فناوری آسانتر، و همچنین استفاده از یک دستگاه ارزان‌تر است که با نیازهای کشاورزان و ساربندهای ما هم‌خوانی داشته باشد. به طور کلی در این پژوهش اهداف زیر مورد نظر بوده است:
الف) کاهش هزینه نسبت به چرخ فلک ورتنکس ب) کاهش (دوربین) مصرف‌در مقایسه با چرخ فلک مکانیکی ج) کاهش مقدار کل تلفات کمیابی‌های د) دید بهتر برای رانندگان کمیابی
(۵) نصب آسان سیستم بدون تغییر در سکوی برش
مواد و روش‌ها
آزمون‌ها در دو قسمت آزمایشگاهی و مزرعه‌ای انجام شد.
آزمون آزمایشگاهی
در این آزمون یک پرده نوع گریز از مرکز، با تغییرهای به جلو خمیده با قطر ۲۰ سانتی‌متر انتخاب و، وسیله نصب روی شاسی توسط موتور الکتریکی به گردش در ایفای نقش شد. سرعت چرخش شات موتور ۱۲۰ دور در دقیقه بوده که به وسیله دو فرآیند مرکب سه وضعیت روز محرورهای موتور و پنک، دامنه سرعتی ۱۳۰۰ تا ۳۰۰۰ دور در دقیقه ایجاد گردید (شکل ۵). چنین فرآیندها از پلاستیک فشرده، و بر اساس اندازه‌های
مواد علائمگذاری شد (شطرنجی کردن هر ریف). پس از قرار دادن این قابل جلوه دانشگاهی پتله در رأس‌های چهارطرفه‌ای آجاد شد، سرعت باد توسط سرویس سنج حرارتی ۱ اندازه‌گیری شد. این کار در سرتاسر های مختلف با سه تکرار انجام گردید و بیش از ۵ تا ۱۰ بار سرویس باد در جلوه‌های دانشگاهی و در فاصله ۴۰ سانتی‌متری از آن در سرتاسر دورانی ۲۴۷ دور در دقیقه به کمک نمایرگار ۱ رسم شد.

براساس این پروتکل‌ها نمونه‌ها انتخاب سرعت باد در فاصله ۴۰ سانتی‌متری تریم گردید (شکل ۱۱). با توجه به مقادیر میانگین سرعت باد خروجی در جلو دانشگاهی پتله (۱/۹ متر در ثانیه)، و در فاصله ۴۰ سانتی‌متری از آن (۱/۴ متر در ثانیه) در سرتاسر دورانی ۲۴۷ دور در دقیقه، میزان افت در این فاصله حدود ۰/۵ درصد محاسبه شد. با استفاده از دست آوردن توزیع هوا در کنار و انواع محیط‌های بیرون، سرعت باد در هر کمین ۲۴ فوت (۷/۳ متر) پتله به منظور پوشش تمام پتله‌های هم‌زمان کم‌پایان لازم تشخیص داده شد. در این آزمون میزان باد خروجی پتله با توجه به

1. Hot-wire anemometer 2. Grapher
شکل 7. پروفیل سرعت باد در طول دهانه پنکه (سرعت دورانی پنکه ۲۴۷ دور در دقیقه).

شکل 8. پروفیل سرعت باد خروجی در پیه‌های دهانه پنکه (سرعت دورانی پنکه ۲۴۷ دور در دقیقه).

شکل 9. پروفیل سرعت باد خروجی در طول دهانه پنکه (در فاصله ۴۰ سانتی‌متری از دهانه، سرعت دورانی پنکه ۲۴۷ دور در دقیقه).
ساخت و ارزیابی چرخ فلک پایدار برای کمپیوتر

شکل 10. پروفیل سرعت پاید خروجی در پهنای دهانه پنکه (در ناشی 40 سانتی‌متری از دهانه، سرعت دورانی پنکه 2447 دور در دقیقه)

شکل 11. سرعت پاید خروجی در فواصل مختلف از دهانه پنکه (سرعت دورانی پنکه 2447 دور در دقیقه)

شکل 12. دستگاه طراحی شده برای آزمون مزرعه‌ای
نتایج

زاویه 20 درجه

در مقایسه با حالت قبل، میزان ریزش در سرعت‌های منفی افزایش یافته است. به عنوان مثال، در سرعت‌های 270 و 280 دور در دقیقه، مقدار ریزش 28 دهه است، در حالی که در همین سرعت، تحت زاویه 10 درجه، نسبت محصول 30 دهه شمارش شده است. این امر طبق نتایج جدول 1 اختلاف معنی‌داری میان این دو نرخ‌ها وجود ندارد. افزایش تلفات در زاویه 20 درجه، تأثیرات خاص بر خروجی قسمت بهبود گرفت. همین طور، میزان مشاهده نموده که از لحاظ تلفات بذر، زاویه 10 درجه اختلاف معنی‌داری با چرخ فلک ماکتئینی دارد (این در سرعت‌های 270 و 280 دور در دقیقه).

زاویه 20 درجه

در این زاویه چون باد به قسمت‌های پایین تر ساقه برخورد می‌کند (نسبت به در زاویه دیگر)، نیروی کافی برای خم کردن

به منظور اندورسگری افت، از یک قاب چوبی به مساحت

استفاده شد. این مزروع قبل از ورود هغون دمغان به مزروع نمک‌های پیشین شده

افت سکویی پر کردن نزدیکی تر روش‌های توصیه شده

نمونه‌گیری و محاسبه گردید (5). آن گاه مدل بر مسیر همه

حرکت داده شد تا خنک کنند سطح در دو طرف صورت گیرد. پس

از استاندارد، کمیایی این میسیر را بر اساس نمود و به اندورس طول

خود به عقب برگشت داده شد. در فصل آزاد شده، مسرح حرکت

مربط به چرخ فلک‌های بادی و مکانیکی مشخص و در سه

نقطه از هر مسرع‌نوره‌دار صورت گرفت. در پایان

چندان‌گاه جمع‌آوری گردید.

در آزمون مزروعه پنج سرعت مختلف پنکه و سزازی و

وزش باید بررسی شد. این آزمون‌ها در سرعت‌های 270 و

280 دور در دقیقه و زاویای خروجی 10 درجه، به نتیجه بیش از انتظار پذیرفته. کمترین سرعت دورانی (270 دور دقیقه) به‌طور کلی، انتخاب

شعری سرعت باید تولید شده توسط پنکه در حضور میلاد باد

شد به پژوهش‌های پیش‌بینی (7 و 9). همچنین، زاویای

طوری پیش‌بینی شد که به تولید از پنکه در گستره

زیر سبک به خوش‌های برخوردار نماید. با محاسبه افت

کمیایی و افت مزروعه، واکنشی از مقایسه مجموع آوری شده

برای مدل، افت خالص چرخ فلک‌های بادی و مکانیکی

محاسبه گردید.

مقایسه به دست آمده از پژوهش‌های معمول و نمونه‌گیری داده‌ها توسط

تیماری، برای بررسی نهایی و مقایسه میانگین داده‌ها توسط

آزمون‌هایی در طرح بلند کاملاً تصادفی به جدول‌های

مخصص‌منشی شد. از این میزان افت، میزان احراز ساقه

در هر سرعت و زاویه نیز به صورت استاتیکی (از جلو دهانه

پنکه) برای سیستم جدایگان اندازه‌گیری و به منظور بررسی

آماری در جدول‌های مخصوص دچ دش و ارتباط گند مورد

آزمایش توده، و مساحت مزروعه آزمایشی 300 متر مربع

پود.
جدول 1. مقایسه میانگین تلفات دانه در چرخ فلک پدیده و مکانیکی در سطح 5% 

<table>
<thead>
<tr>
<th>میانگین</th>
<th>مشاهدات</th>
</tr>
</thead>
<tbody>
<tr>
<td>زاویه وسیع باد (درجه)</td>
<td>سرعت پنکه (دور در دقیقه)</td>
</tr>
<tr>
<td>10</td>
<td>49(^b)</td>
</tr>
<tr>
<td>20</td>
<td>37(^b)</td>
</tr>
<tr>
<td>30</td>
<td>25/7(^b)</td>
</tr>
<tr>
<td>40</td>
<td>21(^b)</td>
</tr>
<tr>
<td>25(^b)</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td>38/7(^b)</td>
</tr>
<tr>
<td>40</td>
<td>44/4(^b)</td>
</tr>
<tr>
<td>28(^b)</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td>77/3(^b)</td>
</tr>
<tr>
<td>40</td>
<td>30/7(^b)</td>
</tr>
<tr>
<td>58/4(^b)</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td>93/7(^b)</td>
</tr>
<tr>
<td>40</td>
<td>71/4(^b)</td>
</tr>
<tr>
<td>68/7(^b)</td>
<td>20</td>
</tr>
<tr>
<td>99/7(^a)</td>
<td></td>
</tr>
<tr>
<td>32/7(^a)</td>
<td></td>
</tr>
</tbody>
</table>

حریف مشاهده اختلاف معنی‌داری را نشان نمی‌دهد.

شکل 13. تلفات دانه توسط چرخ فلک مکانیکی و پدیده در 0/05 مترمربع، بر اساس دو پنکه
جدول ۲. مقایسه میانگین انحراف سیاته از خط قائم در چرخ فلك‌پایه و مکانیکی در سطح ۵

<table>
<thead>
<tr>
<th>تیمارها</th>
<th>سرعت پنکه (دور در دقیقه)</th>
<th>زاویه وزش پاد (درج)</th>
<th>میانگین</th>
<th>مشاهدات</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۲۴۷</td>
<td>۱۰</td>
<td></td>
<td>۲۵</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>۲۰</td>
<td></td>
<td>۲۵</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>۳۰</td>
<td></td>
<td>۲۳</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>۱۰</td>
<td></td>
<td>۲۲</td>
<td>b</td>
</tr>
<tr>
<td>۲۵۰۳</td>
<td>۲۰</td>
<td></td>
<td>۳۴</td>
<td>a, b</td>
</tr>
<tr>
<td></td>
<td>۳۰</td>
<td></td>
<td>۲۴</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>۱۰</td>
<td></td>
<td>۲۴</td>
<td>b</td>
</tr>
<tr>
<td>۲۸۴۰</td>
<td>۲۰</td>
<td></td>
<td>۲۵</td>
<td>a, b</td>
</tr>
<tr>
<td></td>
<td>۳۰</td>
<td></td>
<td>۲۴</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>۱۰</td>
<td></td>
<td>۲۴</td>
<td>b</td>
</tr>
<tr>
<td>۳۲۱۸</td>
<td>۲۰</td>
<td></td>
<td>۳۵</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>۳۰</td>
<td></td>
<td>۳۰</td>
<td>a, b</td>
</tr>
<tr>
<td></td>
<td>۱۰</td>
<td></td>
<td>۳۰</td>
<td>a</td>
</tr>
<tr>
<td>۳۹۳۲</td>
<td>۲۰</td>
<td></td>
<td>۳۵</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>۳۰</td>
<td></td>
<td>۳۰</td>
<td>a</td>
</tr>
</tbody>
</table>

حرفت‌های اختلاف معنی‌داری را نشان نمی‌دهد.

برای مشاهده اختلاف معنی‌داری، با نگاهی به شکل ۱۴، انحراف سیاته توسط چرخ فلك‌پایه و بادی بر حسب دور پنکه نشان داده شده است.
ساخت و ارزیابی چرخ فلک بادی جدید برای کم‌یابی گردم

1. در محدوده سرعت دورانی ۲۱۵۰ تا ۲۸۱۵ دور در دقیقه، زاویه مناسب برای وزش باد پنکه ۲۰ درجه انجامگردد. 
پت چون تلفات دلته در این زاویه اختلاف معنی‌داری با چرخ فلکی مکانیکی دارد. همچنین در این محدوده وزش بادی مزدروز، از نظر انرژی ساقه اختلاف معنی‌داری با چرخ فلکی مکانیکی دیده نمی‌شود.

2. در دامنه سرعت مناسب پنکه (بند اول)، برای فاصله‌های افقی کم میان بینکه و تیپ‌هایای برخی (کمتر از ۱۵ سانتی‌متر)، می‌توان از سرعت‌های پایین‌تر پنکه و در فاصله‌های پیشتر (۱۵ تا ۳۰) از سرعت‌های پایین‌تر پنکه استفاده نمود.

3. در کله‌های سرعت‌های دورانی مورد آزمایش و زاویه‌های ۱۰ و ۲۵ درجه، تلفات دلته، اختلاف معنی‌داری با چرخ فلکی مکانیکی نشان می‌دهد. در این محدوده سرعت دورانی ۲۱۳۲ تا ۲۳۱۸ دور در دقیقه ساقه‌ای است که با نوع مکانیکی اختلاف معنی‌داری ندارد. البته لازم است این صرف‌اندازی بیشتر و تعیین زاویه برای پنکه بهتر است.

4. این برج هم توزیع سرعت باد خروجی در عرض دهانه پنکه، به نظر می‌رسد که زاویه ۳۰ درجه برای فاصله (افقی) کم بین پنکه و تیپ‌هایای برخی در سرعت‌های ۲۳۲۳ و ۲۳۱۸ دور در دقیقه مناسب باشد. این زاویه و سرعت‌های ذکر شده به شرطی توزیع می‌گردد که از نظر انرژی ساقه اختلاف معنی‌داری با سرعت‌های بند ۵ نداشته باشد.

بحث و نتیجه‌گیری

در زاویه ۱۵ درجه، که باشد که ساقه‌های بالای ساقه‌های برخوردهای کم‌کن و تلفات مناسب را به توجه مناسب ندارد، خورکان ساقه به ساقه‌های صورت‌گرفته است که این که از نظر تغییرات سطحی برای پایه میان‌گین و تغییر تنظیم می‌شود، در این میزان احتراف ساقه دائم در حال تغییر خواهد بود. این مستلزم افزایش تلفقات را به دنبال خواهد داشت.

در زاویه ۳۰ درجه نیز نسبت به زاویه‌های ۱۵ و ۲۵ درجه، باد زاویه‌ای کم‌تری برخورد دارد، در این زاویه باید به قسمت‌های بالای ساقه‌های برخوردهای مربوط می‌شود. در زاویه ۳۰ درجه، برای اثر مستقیم بر خوش‌کاری ندارد، در حالی که این اثر در زاویه‌های ۱۵ و ۲۵ درجه به قسمت‌های بالای ساقه، خوشه‌ها و پیچ‌ها باشد. در این مورد نسبت به به ساقه‌های بالای ساقه، اکثریت می‌تواند راه آن را به ساقه‌های بالای ساقه مشاهده نمود. نتایج اطلاعات نشان می‌دهد که:

منابع مورد استفاده

1. وزارت کشاورزی. ۱۳۷۶. گزارش به زراعت و باشیمی در ایران. اداره کل آمار و اطلاعات، معاونت برنامه‌ریزی و برنامه‌ریزی.