بررسی عوامل مؤثر در ذخیره سازی رطوبت خاک، با استفاده از زیرشکن تبدیلی

طرحی تیغه و مکانیزم تریق سپس برنج در خاک

در کاربرد زیرشکن تبدیلی

نادر ساکتیان دهکردی ۱، پریت قیادان ۲ و سعید مینایی ۲

چکیده

دستگاهی که توانست مالج را در داخل خاک تزریق کند و ظرفیت نگهداری رطوبت خاک را بهبود بخشند مورد نیاز است. هدف از این پژوهش طراحی و ساخت یک دستگاه زیرشکن با تیغه و مکانیزمی است که تواند سپس برنج را در خاک تزریق کند. پارامترهای مورد نظر در عملیات زیرشکن مورد توجه ترکیب شده و شیوه ارائه شده می‌تواند به عنوان روشی خاص برای تزریق سپس مطرح گردد. دستگاه پس از طراحی و ساخت به آسانی به وسیله تراکتور به قارچرگیشن شده. عملیات زیرشکن و تزریق سپس در همکاری و مطالعه مختلف در زیر خاک به خوبی انجام گرفت. این شیوه به عنوان روشی متفاوتی به ترمیم‌های حفاظتی، گه توسط مورگان ارائه شده است، اضافه می‌گردد.

واژه‌های کلیدی: زیرشکن، رطوبت خاک، خاک وزیری، مالج پاشی، حفاظت خاک

مقدمه

از آن جا که عملیات خاک‌وزیری به نظر آمده سایزی پیشرفت بذر، آماده سازی چاه‌گاه ریشه و جلوگیری از رقابت گیاهان انجام می‌شود، غالباً عملیات زیرشکنی خاک به عنوان روشی برای رسیدن به این اهداف مورد نظر بوده است. جوون عملیات زیرشکنی، خاک را در عمق‌های بیشتری می‌شکافد، باعث سهولت تفوشته‌بری آب ور و نفوذ بهتر ریشه می‌گردد. از سوی دیگر، عملیات زیرشکنی در بهبود وضعیت ریشه مؤثر

1. استادیار مالی‌های کشاورزی، دانشکده کشاورزی، دانشگاه شهید ۲. استادیار مالی‌های کشاورزی، دانشگاه تربیت مدرس
است. در شیار به وجود آمدن در عملیات زیرشکنی از ته شیار تا سطح خاک را متصل می‌کند. در مالک‌پایه، پرنگین شیار با خاک بسته نمی‌شود و اگر روی خطوط تراز مشخص انگاج شود، در کنار روابط بسیار مؤثر خاک ری و عراقی (6) با شرایط به مالی پایه، قابل به عنوان یک شیوه مهم در پذیری نمایان داشته و روندهای برای مدت طولانی به اهمیت سبزی برخی، به مدت پرکردند که فضاهای زیرین خاک اشاره داشته. روش پیشنهادی ایشان استفاده از یک دستگاه زیرشکن است که به موقع تراکتور کشیده می‌شود. این روش پیشنهادی یک طراحی گردیده است.

این یکی از این بکارگیری یک زیرشکن و یک بذرکار

دریافتی طراحی شده در میان، دنیا زیرشکنی و مالی پایه‌ای را به اینجا از اینگونه دریافت‌های دردست‌داده، برای اماکن‌های دانشگاهی که توانسته‌اند در زیر خاک در مجموعه‌های مختلف و ایجاد زیرگاه، برای عملیات زیرشکنی انجام دهندند. نتایج به دست آمده بهره‌وری ذخیره آب و حفظ رطوبت و حاصل خیز خاک را به درمان آمیزه‌ای مزدهای افران‌شکن محصول را تیز نموده می‌کند. در این پرسی، مالی پایه‌ای سطحی با استفاده از کاه شد. عملیات ایجاد می‌کند.

این‌ها (5) در پژوهش تأثیر عملیات زیرشکنی را در توزیع مصوبات طالعی و رطوبت خاک بررسی نمودند. ایشان با آزمایش چهار عمل خاکوروزی (شکم پاییزه، چیول پاییزه، دیسه‌های بهاری، و بهترین خاکوروزی)، تراکم، رطوبت و محدودیت توافدپذیری خاک را در بررسی محصول خاک مطالعه کردند. هم چنین، پاییز سال 1388 تا 1391 با انجام عملیات روی خاک‌های مختلف، تاکید آن را بر محصول دردر در سه فصل برداشت تجزیه و تحلیل نموده و تجربه گرفتند که عملیات زیرشکنی بر روی مصوبه‌های طالعی و رطوبت خاک در سال 1390 اثر محسوسی دردسته‌است. ولی از سال 1390 تا 1391 این اثر معنادار نبوده است. هم چنین، تجربه گیری کردن که میزان و رطوبت خاک امضاً نمایی از افزایش وزن مصوبات طالعی خاک افزایش یابد. در ایشان شده در عملیات خاک روزی بدون مالی پایه‌ای بوده است.

مواد و روش‌ها

طراحی دستگاه زیرشکنی تبدیلی بر پایه ترکیب مالی سیس در زیر خاک صورت می‌گیرد. به این معنی که دستگاه ضمن شکستن خاک و ایجاد شار زیرسپح، با استفاده خاک در دو سطح مقطع دایرهای شکل به قطرهای 5 و 7/5 سانتی‌متر، امکان پذیری یافته می‌شود. از سوی دیگر، در عملیات مختلف زیرشکنی را انجام دهند. پس از آن را به وسیله تراکتور کشیده، به سادگی کاربرد داشته باشد.

از ویژگی‌های مهم در طراحی دستگاه، وضعیت تیغه و مکان‌یابی ترکیب سیس در خاک است. با توجه به خصوصیات مورد نظر و محاسبات مربوط، قطعات طراحی گردید، و
بررسی عوامل مؤثر در ذخیره‌سازی رطوبت خاک

1. جمعه‌دمده
2. محل اتصال بازوى میانی تراکتور
3. خرچ دندان‌های شماره ۶ و ۷
4. مخزن
5. بی‌کاری اصلی شاسی
6. پایه نگهدارنده
7. تیغه
8. تیغه منصل به شاسی
9. لنزچی اندازه‌گیری
10. خرچ زمین‌گرد
11. لوله ریزش سیبوس
12. لنزچی منصل به شاسی

درنهاپت، با ساخت آنها و پوستن به چکی‌گر، دستگاه شکل گرفت.
شکل ۲ نمایی از دستگاه را نشان می‌دهد.

طراحی تیغه

طراحی تیغه بر پایه برش و تفکرد در خاک انجام می‌گیرد. عوامل مورد توجه در طراحی، مقدار مطلوب طول تیغه و زاویه تیغه با افق می‌باشد. مقدار مجاز زاویه تیغه را می‌توان از توازن نیروها محاسبه نمود. با توجه به شکل ۲، با بررسی نیروهای مؤثر، معادلاتی به دست می‌آید که به وسیله آن مقدار زاویه تیغه مشخص می‌گردد و رابطه زیر حاصل می‌شود:

\[F_n = \frac{F_r}{\mu} \Rightarrow \frac{F_r}{\mu} - P \cos \alpha - F \sin \alpha = 0 \]

\[F_r = F \cos \alpha - P \sin \alpha \Rightarrow F_r = \mu (P \cos \alpha + F \sin \alpha) \]

\[\Rightarrow F \cos \alpha - P \sin \alpha = \mu P \cos \alpha + \mu F \sin \alpha \]

\[\Rightarrow \tan \alpha = \frac{F - \mu P}{\mu F + P} \]

رابطه ۱، حاکم‌تر مقدار زاویه تیغه را نشان می‌دهد (۱). همچنین، بایدگر آن است که مقدار زاویه پس‌گی به نیروی وزن

شکل ۱. طرح دستگاه زیرشکن تبدیل

شکل ۲. توازن نیروهای وارد بر توده خاک روزت تیغه

شکل ۳. نیروی مؤثر بر ساختمان و تیغه زیرشکن

خاک (P)، جنس خاک (μ) و نیروی مقاوم در اندازه‌گیری خاک دراد. بنابراین، تغییر در هر یک، باعث تغییر در اندازه‌گیری خاک، تیغه

۲۱۳
سطح تحمیل، نیروی کشش، پایه‌ها نیرو دیگر امکان‌پذیر است. اگر این نیرو به F، پایه‌های D، که F به F و B به F و B افزایش یابند، باید کل نیروی دیگر امکان‌پذیر باشد.

اگر (9) است، می‌گردد:

\[
 F_0 = F_d \times h
\]

و مطابق شکل 3، بر سطح زیرآشفته عمل می‌کند. پایه‌های B به F و بار مساحت مثلث بار خواهد بود.

\[
 F_0 = \frac{B \times h}{\gamma} \Rightarrow B = \frac{\gamma \times F_0}{h}
\]

با استفاده از رابطه 2، نتیجه می‌شود:

\[
 B = 2 \times F_d
\]

یکی از اکثر نیروی مؤثر است، پایه‌ای، میزان نیروی مؤثر بر تغییر طول شکل 4 به دست می‌آید.

با توجه به شکل 4، نتیجه می‌شود:

\[
 \frac{h - e}{h} = \frac{b}{B} \Rightarrow b = \frac{B(h - e)}{h}
\]

\[
 F = \left(B + b \right) \times e \Rightarrow F = \frac{B + e(h - e)}{h}
\]

\[
 F = \frac{e \times h \times B + B \times e(h - e)}{2} \times h
\]

با استفاده از رابطه 4، نتیجه می‌شود:

\[
 F = \frac{F_d \left((h - e) \right)}{h}
\]

سطح نامحسوس همان سطح تحمیل است. هر چه سطح خاک نزدیک‌تر شود، به دلیل پرورشگری زیاد خاک، افزایش پیدا می‌کند. بینه به نوع بافت و رطوبت خاک، محل گسترش خاک معلوم نیست، و می‌توان زاویه مشخص برای آن قابل شدن، ولی به صورت ناپایه‌ای یا یک نیرو کششی که هره
شکل 4. نیروی مقاوم مؤثر بر تیغه

شکل 5. تأثیر گوشه خاك بر تیغه

شکل 6. حجم تقیی خاك
زمین گرد به عنوان پارامتر اصلی در نظر گرفته می‌شود. اگر قطر خور ۹ سانتی‌متر باشد، مقدار پیش‌روی (LW) در یک دور در گردد خور خواهد بود.CU
\[LW = 40 \times 10^{-4} \Rightarrow LW = 0.152 \text{ cm} \]

یکی از پارامترهای مورد نظر این پژوهش نوار سوز و سیستم تزریق سیسوس با قطر ۵/۵ سانتی‌متر است. بنابراین، محاسبات باید دستیابی به این هدف است. سپس بایدهای تزریق دندانهای ارتباً ریزش برای قطر ۵ سانتی‌متر نیز تنظیم گردد.

با توجه به شکل ۸، حجم سیسوس تزریق شونده در زیر خواهد بود:
\[Vw = S \times Lw = V_{w} = \left(\frac{1}{3} \pi r^2 h \right) \times 0.152 = 555 \text{ cm}^3 \]

\[Vw = \frac{1}{3} \pi r^2 h \]

حجم مقدار سیسوس است که بدین‌کناری، در یک دور خور ۹ سانتی‌متر، گرد در خاک تزریق گردیده و به سطح فضای نوار سیسوس است. برای طراحی مکانیزم تزریق کننده از یک پیچ ارشمیدس (هلیس) با مشخصات شکل ۹ استفاده می‌شود.

همان‌طور که در بین نمودار می‌شود: حجم گرم‌لیس، یا حجم جایگا شونده در یک دور هلیس.

\[Vh = \frac{1}{3} \pi r^2 h \times 0.152 = 442 \text{ cm}^3 \]

\[Vh = \left(\frac{1}{3} \pi r^2 h \right) \times 0.152 = 442 \text{ cm}^3 \]

برای تزریق حجم سیسوس در یک دور چرخش زمینگرد به عنوان ۵۵۵ سانتی‌متر مکعب سیسوس، تعداد دور هلیس برای انجام این عمل محاسبه می‌گردد.

\[Vw + Vh = N \]

\[N = 555 + 442 = 10/315 \]

بنابراین، برای یک دور چرخش، باید محور هلیس تزریق کننده ۱۵/۵ دور یکانی تا نواری به قطر ۵/۵ سانتی‌متر سیسوس در زیر خاک پیدا آید.

مکانیزم محور هلیس، به وسیله یک جعبه تعادل به صورت شکل ۸ طراحی می‌گردد. نواری به مکانیزم‌های مربوطه منتقل نموده، به‌عنوان ریزش سیسوس می‌گردد. در محاسبات مربوطه، محوطه چرخش.
پروسه عوامل مؤثر در ذخیره سازی رطوبت خاک

شکل 7. چگونگی ریوش سبسو

شکل 8. میزان ریوش سبسو به ازای یک دور چرخش زمین گرد

شکل 9. پیچ تزریق کننده سبسو
نوع و نمونه کشاورزی و منابع طبیعی / احمد پنجی / شماره دوم / تابستان ۱۳۸۰

شکل ۱۰. جعبه دندان‌های متعدد

جعبه دندان دارای دو چرخ دندان مخروطی با تعداد ۹ و ۱۴ دندان انتخاب گردیده است. بنابراین، تعداد دور محرور افقی (nV) به دست می‌آید:

\[n_V = \frac{n_{10}}{2} = \frac{7}{2} = 3.5 \]

تعداد دندان‌های چرخ دندان شماره ۳۰ عدد انتخاب می‌شود.

\[n_0 \times N_0 = n_0 \times n_V = 30 \times 3.5 = 105 \]

چرخ دندان شماره ۷۲ تا ۲۲ عدد بوده و مطالب شکل ۱۱، با چرخ دندان‌های شماره ۲ و ۶ هم محرور خواهد بود.

نتایج و بحث

تعداد دندان‌های چرخ دندان شماره ۱۰ عدد، و چرخ دندان شماره ۶۴ عدد انتخاب شده است. در نتیجه تعداد دور چرخ دندان شماره ۵ به دست خواهد آمد:

\[n_0 \times N_0 = n_0 \times n_V = 64 \times 3.5 = 224 \]

کلیه بخش‌های عمق کار برای خاک‌های مختلف بین ۱۲۰ تا ۲۸۰ نیوتون (N/cm) متغیر است (۲)، در اینجا از ۲۸۰ نیوتون به عنوان نمونه کاربردی انتخاب می‌شود.

نتیجه:

۲۱۸
جدول 1. نتایج طراحی تیغه (کبراپر ۵)

<table>
<thead>
<tr>
<th>اندازه پارامتر</th>
<th>زاویه تیغه</th>
<th>طول تیغه</th>
<th>عرض تیغه</th>
<th>حداکثر تیغه در خاک لومی رسی</th>
<th>حداکثر عمق در خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴/۸/۲ درجه</td>
<td>۱۲/۴۱ سانتی‌متر</td>
<td>۸ سانتی‌متر</td>
<td>۱۵/۲ کی‌نوئل</td>
<td>۴۰ سانتی‌متر</td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. نتایج زاویه تیغه در انرژی‌های مختلف (برحسب درجه)

<table>
<thead>
<tr>
<th>(برحسب درجه)</th>
<th>(۵۱)</th>
<th>(۴۱)</th>
<th>(۴۶)</th>
<th>(۴۶)</th>
<th>(۱)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(۲۵)</td>
<td>(۴۸)</td>
<td>(۴۴)</td>
<td>(۴۰)</td>
<td>(۳۶)</td>
<td>(۱۰)</td>
</tr>
</tbody>
</table>

جدول ۲. نتایج زاویه تیغه در انرژی‌های مختلف (برحسب درجه)

<table>
<thead>
<tr>
<th>(برحسب درجه)</th>
<th>(۲۹)</th>
<th>(۲۴)</th>
<th>(۱۹)</th>
<th>(۱۴)</th>
<th>(۱۰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(۱۹)</td>
<td>(۱۴)</td>
<td>(۱۰)</td>
<td>(۶)</td>
<td>(۴)</td>
<td>(۱)</td>
</tr>
</tbody>
</table>

شکل 11. موقعیت چرخ دندانها

برای هر سانتی‌متر عمق استفاده شده است (این مقادیر حداکثر در خاک لومی رسی است) اگر پارامترهای دیگر برای طراحی به شرح زیر انتخاب شوند:

\[
\frac{0.038}{N/cm} = F_d
\]

\[
\frac{380}{N/cm} = \text{معادل عمق (N/cm}) = \frac{F_d}{0.038}
\]

\[
40 \text{ cm} = \mathbf{h}
\]

\[
10 \text{ cm} = \mathbf{e}
\]

\[
\alpha/\mathbf{e} = \mu
\]

\[
\mathbf{a} \text{ cm} = \mathbf{a}
\]

\[
\frac{\alpha}{0.8} \text{ N/kg} = \mathbf{g}
\]

\[
\frac{1}{\nu} \text{ gr/cm}^2 = \rho
\]

\[
5 = k
\]

با جایگذاری در رابطه ۷، زاویه تیغه، و در نتیجه طول آن به دست خواهد آمد:

\[
\frac{0.038}{28<\alpha<29} \times 28/29 = 28/30 > 28/29 = 28/29
\]

درجه ۷

\[
\alpha = \frac{28/29}{28/29} = 13/41 \text{ cm}
\]

نتایج حاصل در جدول ۱ آمده است.

اگر برای طراحی پارامترهای که قبل آمده بود استفاده شد در نظر گرفته شود، برای تغییرات مقادیر زاویه \(\alpha\) مطالب جدول ۲ به دست خواهد آمد.
شکل ١٢. روش‌های حفاظتی در زمین‌های کشاورزی

شکل ١٣. روش‌های حفاظتی در زمین‌های شهری
شکل 14. روش‌های حفاظتی در زمین‌های غیرکشاورزی

خوبی نیازهای عملیات را پاسخگویید و کاملاً درای
ویژگی‌های کامپیوتری است. در طراحی تجهیز دستگاه، وابسته به
عنوان یکی از ویژگی‌های کامپیوتری می‌تواند مرور توجه قرار بگیرد. نتایج
به دست آمده در جداول 2 و 3 به خوبی ارتباط زاویه و تیغه را با
پارامترهای متغیر با یک‌دیگر تأیید می‌کند. بنابراین صورت که
تزیین با قطر 5 سانتی‌متر را انتخاب خواهند داد. تمامی چرخ
دندهها با گام یکسان، وباسته‌ای از زنجیر صنعتی نمره 5 به
کارگرفته می‌شوند.

پرسی نتایج در آزمایش زیرشکن تبدیلی در عملیات
مزرعه‌ای، نشان داد که طراحی ابعاد و مکانیزم‌های دستگاه به

271
مشابهه می‌شود، هر چه بانک خارجی سیگنن تراشده باشد، زاوه تیغه را می‌توان کمتر گرفت. در افرادی، نمو و وزن خاصی، که ارتباط با بانگ و رطوبت خاص دارد نیز، زاوه تیغه می‌تواند کمتر باشد.

بدری است، درنهاپی که وضع‌یابی مطلوب برای تیغه در نظر گرفته می‌شود. این بیشتر مورد توجه این پژوهش بوده است، پس تا نظری رابطه ارائه شده در مورد تیغه می‌باشد.

در آزمایش به عمل آمده، سیستم نوارساز سیبوس یک‌کاس و رضایت‌بخش بود. باید دقت بیشتری در مورد سیستم چربی زمین گرد مانیشین را بر پایه استفاده از محور توان دهی تراکتور مورد منابع مورد استفاده را تا به ف. ۱۳۳۶ نشات گرفته و عملی ماسیون کشش‌زن ۱۳۴۱. انواع ماسیون کشش‌زن (تأثیرگذاری چند سیستم و همکاران)، انشوراته و نوآورانه، تهران.

